
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 11
Pipes, Continued

😷 masks strongly
recommended

2

CS111 Topic 2: Multiprocessing

Multiprocessing
Introduction

Managing
processes and
running other

programs

Inter-process
communication

with pipes

Lecture 8 Lecture 9 Today / Lecture 11

assign3: implement your own shell!

Key Question: How can our program create and interact with other programs? How
does the operating system manage user programs?

3

Learning Goals
• Learn about dup2 to rewire file descriptors
• See how to use pipe + dup2 to implement pipelines
• Understand how to implement I/O redirection

4

Plan For Today
• Recap: Pipes so far
• Closing pipes
• dup2() and rewiring file descriptors
• Implementing pipelines
• Practice: implementing subprocess
• I/O Redirection with files

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

5

Plan For Today
• Recap: Pipes so far
• Closing pipes
• dup2() and rewiring file descriptors
• Implementing pipelines
• Practice: implementing subprocess
• I/O Redirection with files

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

6

How do we implement shell pipelines?
To implement two-process pipelines, we must do the following:
1. Spawn 2 child processes (1 per command)
2. Create a “magic portal” that allows data to be sent between two processes
3. Connect one end of that portal to the first child’s STDOUT, and the other end

to the second child’s STDIN
First child Second child

STDIN STDOUT STDERR STDIN STDOUT STDERR

Terminal “Magic portal” Portal image unmodified, CC credit

https://pixexid.com/image/a-mesmerizing-cgi-render-of-a-wormhole-bending-space-and-time-surrounded-by-bri-d2hga3nz

7

How do we implement shell pipelines?
Three key questions:
1. What the heck is a “magic portal” and how do we create one?

The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork(), plus a new property of execvp

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call

8

How do we implement shell pipelines?
Three key questions:
1. What the heck is a “magic portal” and how do we create one?

The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork(), plus a new property of execvp

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call

9

“Magic Portal”: pipe() System Call
int pipe(int fds[]);

The pipe system call gives us back two file descriptors, where everything written
to one can be read from the other.
• Specifically: populates the 2-element array fds with the two file descriptors.

Everything written to fds[1] can be read from fds[0]. Tip: you learn to read
before you learn to write (read = fds[0], write = fds[1]).
• Returns 0 on success, or -1 on error.

Imagine: like opening the same file twice, once for reading and once for writing

10

How do we implement shell pipelines?
Three key questions:
1. What the heck is a “magic portal” and how do we create one?

The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork(), plus a new property of execvp

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call

11

pipe() and fork()
Key idea: a pipe can facilitate parent-child communication because file
descriptors are duplicated on fork(). Thus, a pipe created prior to fork() will
also be accessible in the child!

But wait – isn’t the child a copy of the parent? So wouldn’t it get a copy of the
pipe, not share the same one?
Key idea: the child accesses the same pipe because its file descriptor table is
copied, which does not contain the actual pipe data; that is stored in the global
“open file table” which is not duplicated on fork.

12

Open File Table
The open file table is complex! Here are the key takeaways of why it’s useful to
know about how it works:
• It explains why, when we fork off a child process, the child process gets

“shallow copies” of all parent file descriptors. E.g. parent/child can share a
pipe, or same cursor is advanced by both.
• It explains why we need to close those duplicated file descriptors in both the

parent and the child.

13

File Descriptor Table
An entry in a file descriptor table is really a pointer to an entry in another global
table, the open file table.
• The open file table is one array of information about open files/resources

across all processes.
• There is one open file table entry per session, not per file

0 1 2 3 … …

Process A control block

0 1 2 3 … …

Process B control block

mode: r
refcount: 2
Cursor:
…(terminal in)

mode: w
refcount: 2
Cursor:
…(terminal out)

mode: w
refcount: 2
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
…(file.txt)

mode: w
refcount: 1
Cursor:
…(script.txt)

…Open file table

14

Practice: Reference Count
If a process opens a file, and then spawns a child process, what will the
reference count be for the corresponding open file table entry?

int fd = open("file.txt", O_RDONLY); // fd = 3 here
pid_t pidOrZero = fork();

0 1 2 3 … …

Parent process control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

… …Open file table

15

Practice: Reference Count
If a process opens a file, and then spawns a child process, what will the
reference count be for the corresponding open file table entry?

int fd = open("file.txt", O_RDONLY); // fd = 3 here
pid_t pidOrZero = fork();

0 1 2 3 … …

Parent process control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
...(file.txt)

…Open file table

16

Practice: Reference Count
If a process opens a file, and then spawns a child process, what will the
reference count be for the corresponding open file table entry?

int fd = open("file.txt", O_RDONLY); // fd = 3 here
pid_t pidOrZero = fork();

0 1 2 3 … …

Child process control block

0 1 2 3 … …

Parent process control block

mode: r
refcount: 2
Cursor:
…(terminal in)

mode: w
refcount: 2
Cursor:
…(terminal out)

mode: w
refcount: 2
Cursor:
..(terminal error)

mode: r
refcount: 2
Cursor:
...(file.txt)

…Open file table

17

Practice: Reference Count
If a process spawns a child process, and then opens a file, what will the
reference count be for the corresponding open file table entry?

pid_t pidOrZero = fork();
int fd = open("file.txt", O_RDONLY); // fd = 3 here

0 1 2 … … …

Parent process control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

… … …Open file table

18

Practice: Reference Count
If a process spawns a child process, and then opens a file, what will the
reference count be for the corresponding open file table entry?

pid_t pidOrZero = fork();
int fd = open("file.txt", O_RDONLY); // fd = 3 here

0 1 2 … … …

Parent process control block

mode: r
refcount: 2
Cursor:
…(terminal in)

mode: w
refcount: 2
Cursor:
…(terminal out)

mode: w
refcount: 2
Cursor:
..(terminal error)

… … …Open file table

0 1 2 … … …

Child process control block

19

Practice: Reference Count
If a process spawns a child process, and then opens a file, what will the
reference count be for the corresponding open file table entry?

pid_t pidOrZero = fork();
int fd = open("file.txt", O_RDONLY); // fd = 3 here

0 1 2 3 … …

Child process control block

0 1 2 3 … …

Parent process control block

mode: r
refcount: 2
Cursor:
…(terminal in)

mode: w
refcount: 2
Cursor:
…(terminal out)

mode: w
refcount: 2
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
...(file.txt)

mode: r
refcount: 1
Cursor:
…(file.txt)

…Open file table

20

pipe()
static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }
 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

21

Plan For Today
• Recap: Pipes so far
• Closing pipes
• dup2() and rewiring file descriptors
• Implementing pipelines
• Practice: implementing subprocess
• I/O Redirection with files

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

22

Pipe Stalling
Not closing write ends of pipes can cause functionality issues.
- E.g. if the child reads from a pipe, but the parent waits for the child to finish

before writing anything, the child will stall waiting for more input.
- E.g. if the child reads until there’s nothing left, but the write end was not

closed everywhere, it will stall.

23

Ex: Child reads, parent writes after waitpid
static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }
 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 waitpid(pidOrZero, NULL, 0);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 return 0;
}

child stuck here!

24

Ex: Child reads continually, parent
doesn’t close

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 while (true) {
 ssize_t ret = read(fds[0], buffer, sizeof(buffer));
 if (ret == 0) break;
 printf("Message from parent: %s\n", buffer);
 }
 close(fds[0]);
 return 0;
 }
 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 waitpid(pidOrZero, NULL, 0);
 close(fds[1]);
 return 0;
}

child stuck here!

25

Ex: Child reads continually, forgets to
close write end itself

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) { // In the child, we only read from the pipe

close(fds[1]);
 char buffer[bytesSent];
 while (true) {
 ssize_t ret = read(fds[0], buffer, sizeof(buffer));
 if (ret == 0) break;
 printf("Message from parent: %s\n", buffer);
 }
 close(fds[0]);
 return 0;
 }
 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

child stuck here!

26

How do we implement shell pipelines?
Three key questions:
1. What the heck is a “magic portal” and how do we create one?

The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork(), plus a new property of execvp

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call

27

Plan For Today
• Recap: Pipes so far
• Closing pipes
• dup2() and rewiring file descriptors
• Implementing pipelines
• Practice: implementing subprocess
• I/O Redirection with files

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

28

First Goal: Rewiring STDIN

0 1 2 3 4 …

Parent process control block

mode: r
refcount: X
(terminal in)

mode: w
refcount: X
(terminal out)

mode: w
refcount: X
(terminal error)

mode: r
refcount: 2
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

dup2(srcfd, dstfd)
e.g. dup2(3, 0)

29

Redirecting Process I/O
dup2 makes a copy of a file descriptor entry and puts it in another file descriptor
index. This means both will now point to the same open file table entry. If the
second parameter is an already-open file descriptor, it is closed before being
used.

int dup2(int srcfd, int dstfd);

Example: we can use dup2 to copy the pipe read file descriptor into standard
input! Then we can close the original pipe read file descriptor.
dup2(fds[0], STDIN_FILENO);
close(fds[0]);
If we change file descriptors 0-2, we can redirect STDIN/STDOUT/STDERR to be
something else without the program knowing!

30

Redirecting Process I/O

0 1 2 3 4 …

Parent process control block

mode: r
refcount: X
(terminal in)

mode: w
refcount: X
(terminal out)

mode: w
refcount: X
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

int fds[2];

pipe(fds); // assume fds[0] is 3 and fds[1] is 4

dup2(fds[0], STDIN_FILENO);

close(fds[0]);

31

Redirecting Process I/O

0 1 2 3 4 …

Parent process control block

mode: r
refcount: X
(terminal in)

mode: w
refcount: X
(terminal out)

mode: w
refcount: X
(terminal error)

mode: r
refcount: 2
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

int fds[2];

pipe(fds); // assume fds[0] is 3 and fds[1] is 4

dup2(fds[0], STDIN_FILENO);

close(fds[0]);

32

Redirecting Process I/O

0 1 2 3 4 …

Parent process control block

mode: r
refcount: X
(terminal in)

mode: w
refcount: X
(terminal out)

mode: w
refcount: X
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

int fds[2];

pipe(fds); // assume fds[0] is 3 and fds[1] is 4

dup2(fds[0], STDIN_FILENO);

close(fds[0]);

33

34

35

36

Plan For Today
• Recap: Pipes so far
• Closing pipes
• dup2() and rewiring file descriptors
• Implementing pipelines
• Practice: implementing subprocess
• I/O Redirection with files

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

37

How do we implement shell pipelines?
To implement two-process pipelines, we must do the following:
1. Spawn 2 child processes (1 per command)
2. Create a “magic portal” that allows data to be sent between two processes
3. Connect one end of that portal to the first child’s STDOUT, and the other end

to the second child’s STDIN
First child Second child

STDIN STDOUT STDERR STDIN STDOUT STDERR

Terminal “Magic portal” Portal image unmodified, CC credit

https://pixexid.com/image/a-mesmerizing-cgi-render-of-a-wormhole-bending-space-and-time-surrounded-by-bri-d2hga3nz

38

How do we implement shell pipelines?
To implement two-process pipelines, we must do the following:
1. Create a pipe prior to spawning the child processes
2. Spawn 2 child processes (1 per command)
3. Use dup2 to connect the first child’s STDOUT to the write end of the pipe.

Use dup2 again to connect the second child’s STDIN to the read end of the
pipe. First child Second child

STDIN STDOUT STDERR STDIN STDOUT STDERR

Terminal

Read Write

Pipe

39

A Secret About execvp
Problem: if we spawn a child and rewire its STDOUT to point to a pipe, won’t
everything get wiped anyway when we call execvp?

New insight: execvp consumes the process but leaves the file descriptor table
intact!

40

Implementing Shell Pipelines
On assign3, you’ll build up your shell implementation to support arbitrary-length
pipelines. You’ll need to spawn N child processes and N-1 pipes.

41

Practice: Subprocess
To practice with dup2 and rewiring, let’s implement subprocess, a function that
spawns a child and connects a pipe to it so that the parent can write to the pipe
to send data to the child’s STDIN.
This is useful because we can spawn and run any other program, even if we
don’t have the source code for it, and feed it input.

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 1
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

42

subprocess
To practice this piping technique, let's implement a custom function
called subprocess.

subprocess_t subprocess(char *command);

subprocess spawns a child to run the specified command and returns its PID as
well as a file descriptor we can write to to write to its STDIN.

It returns a struct containing:
• the PID of the child process
• a file descriptor we can use to write to the child's STDIN

subprocess-soln.cc

43

subprocess
int main(int argc, char *argv[]) {
 // Spawn a child that is running the sort command
 subprocess_t sp = subprocess("/usr/bin/sort");

 // We would like to feed these words as input to sort
 const char *words[] = { "felicity", "umbrage", "susurration", "halcyon",
"pulchritude", "ablution", "somnolent", "indefatigable" };

 // write each word on its own line to the STDIN of the child sort process
for (size_t i = 0; i < sizeof(words) / sizeof(words[0]); i++) {

 dprintf(sp.supplyfd, "%s\n", words[i]);
 }

 // Close the write FD to indicate the input is closed
 close(sp.supplyfd);
 // Wait for the child to finish before exiting
 waitpid(sp.pid, NULL, 0);
 return 0;
}

44

subprocess
Implementing subprocess:
1. Create a pipe
2. Spawn a child process
3. That child process changes its STDIN to be the pipe read end (how?)
4. That child process calls execvp to run the specified command
5. We return the pipe write end to the caller along with the child’s PID. That

caller can write to the file descriptor, which appears to the child as its STDIN

45

subprocess
subprocess_t subprocess(const char *command) {
 // this line parses the command into a pipeline like is done for you on assign3
 pipeline p(command);

 // Make a pipe
 int fds[2];
 pipe(fds);

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // We are not writing to the pipe, only reading from it
 close(fds[1]);

 // Duplicate the read end of the pipe into STDIN
 dup2(fds[0], STDIN_FILENO);
 close(fds[0]);

 // Run the command
 execvp(p.commands[0].argv[0], p.commands[0].argv);
 exitIf(true, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);
 }
 ...

46

Plan For Today
• Recap: Pipes so far
• Closing pipes
• dup2() and rewiring file descriptors
• Implementing pipelines
• Practice: implementing subprocess
• I/O Redirection with files

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

47

Redirecting Process I/O to/from a File
There is one final shell feature we can use our understanding of file descriptors
to implement, I/O Redirection with a file:

This saves the output to a file instead of printing it to the terminal
sort file.txt > output.txt

This reads input from a file instead of reading from the terminal
sort < input.txt

Consider how we can use our knowledge of file descriptors to implement this
functionality on assign3!

48

Practice: Subprocess
Example: sort < input.txt

0 1 2 … … …

Child process control block

mode: r
refcount: X
(terminal in)

mode: w
refcount: X
(terminal out)

mode: w
refcount: X
(terminal error)

mode: r
refcount: 1
(input.txt)

… …Open file table

49

assign3
Implement your own shell! (“stsh” – Stanford Shell)

4 key features:
• Run a single command and wait for it to finish
• Run 2 commands connected via a pipe
• Run an arbitrary number of commands connected via pipes
• Have command input come from a file, or save command output to a file

50

Recap
• Recap: Pipes so far
• Closing pipes
• dup2() and rewiring file descriptors
• Implementing pipelines
• Practice: implementing subprocess
• I/O Redirection

Next time: introduction to multithreading

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

Lecture 11 takeaway: We can
share pipes with child processes
and change FDs 0-2 to connect
processes and redirect their I/O.

