
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 14
Condition Variables

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 5.2-5.4

and Section 6.5

😷 masks strongly
recommended

2

CS111 Topic 3: Multithreading, Part 1

Multithreading
Introduction

Race
conditions and

locks

Condition
Variables

Multithreading
Patterns

Lecture 12 Last Lecture This Lecture Lecture 15

assign4: implement several multithreaded programs while eliminating race conditions!

Topic 3: Multithreading - How can we have concurrency within a single
process? How does the operating system support this?

3

Learning Goals
• Learn about ways to add constraints to our programs to prevent deadlock
• Learn how condition variables can let threads signal to each other and wait for

conditions to become true

4

Plan For Today
• Recap: mutexes and dining philosophers
• Encoding resource constraints
• Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect14 .

5

Plan For Today
• Recap: mutexes and dining philosophers
• Encoding resource constraints
• Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect14 .

6

Mutexes
A mutex (”mutual exclusion”) is a variable type that lets us enforce the pattern
of only 1 thread having access to something at a time.
• You make a mutex for each distinct thing you need to limit access to.
• You call lock() on the mutex to attempt to take the lock
• You call unlock() on the mutex when you are done to give the lock back
• A way to add a constraint to your program: “only one thread may access or

execute this at a time”.

7

Ticket Agents
static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {
 while (true) {
 counterLock.lock(); // only 1 thread can proceed at a time
 if (remainingTickets == 0) {
 counterLock.unlock(); // must give up lock before exiting
 break;
 }
 size_t myTicket = remainingTickets;
 remainingTickets--;
 counterLock.unlock(); // once thread passes here, another can go
 sleep_for(500); // simulate "selling a ticket"
 ...

8

Deadlock
Deadlock occurs when multiple threads are all blocked, waiting on a resource
owned by one of the other threads. None can make progress! Example:

E.g. if thread A executes 1 line, then thread B executes 1 line, deadlock!
One prevention technique - prevent circularities: all threads request resources in
the same order (e.g., always lock mutex1 before mutex2.)
Another – limit number of threads competing for a shared resource

Thread A Thread B
mutex1.lock();
mutex2.lock();
...

mutex2.lock();
mutex1.lock();
...

9

Deadlock Example: Dining
Philosophers Simulation

• Five philosophers sit around a circular table, eating spaghetti
• There is one fork for each of them
• Each philosopher thinks, then eats, and repeats this three times for their

three daily meals.
• To eat, a philosopher must grab the fork on their left and the fork on their

right. Then they chow on spaghetti to nourish their big, philosophizing brain.
• When they're full, they put down the forks in the same order they picked them

up and return to thinking for a while.
• To think, a philosopher keeps to themselves for some amount of

time. Sometimes they think for a long time, and sometimes they barely think
at all.

10

Dining Philosophers

static void eat(size_t id, mutex& left, mutex& right) {
 left.lock();
 right.lock();
 cout << oslock << id << " starts eating om nom nom
nom." << endl << osunlock;
 sleep_for(getEatTime());
 cout << oslock << id << " all done eating." << endl
 << osunlock;
 left.unlock();
 right.unlock();
}

eat is modeled as grabbing the two forks, sleeping for some amount of time,
and putting the forks down.

Spoiler: there is a race condition here that
leads to deadlock – deadlock occurs when
multiple threads are all blocked, waiting on a
resource owned by one of the other blocked
threads. When could this happen?

11

Food For Thought
What if: all philosophers grab their left fork and then go off the CPU?
• Deadlock! All philosophers will wait on their right fork, which will never

become available
• Testing our hypothesis: insert a sleep_for call in between grabbing the two

forks
• We should be able to insert a sleep_for call anywhere in a thread routine and

have no concurrency issues.
• We (incorrectly) assumed that at least one philosopher is always able to pick

up both of their forks. How can we fix this?

dining-philosophers-with-deadlock.cc

12

Race Conditions and Deadlock
In multithreaded programs, we need to ensure that:

there are never race conditions
• we can generally solve race conditions with mutexes. Use them to mark the

boundaries of critical sections to limit them to 1 thread at a time.

there's zero chance of deadlock (otherwise some or all threads are neglected)
• we can solve deadlock by requesting resources in the same order and by

limiting the number of threads competing for a shared resource.

13

Plan For Today
• Recap: mutexes and dining philosophers
• Encoding resource constraints
• Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect14 .

14

Encoding Resource Constraints
Goal: we must encode resource constraints into our program.
Example: how many philosophers can try to eat at the same time?
• Alternatively: how many philosophers can eat at the same time? Two.
• Why might the first one be better? Imposes less bottlenecking while still

solving the issue.

How can we encode this into our program?
Have a counter of “permits”. Initially 4. A philosopher must have a permit
(decrement counter or wait) to try to eat. Once done eating, a philosopher
returns its permit (increment counter).

Four.

15

Tickets, Please…
int main(int argc, const char *argv[]) {
 mutex forks[kNumForks];

 size_t permits = kNumForks - 1;
 mutex permitsLock;

 thread philosophers[kNumPhilosophers];
 for (size_t i = 0; i < kNumPhilosophers; i++) {
 philosophers[i] = thread(philosopher, i, ref(forks[i]),
 ref(forks[(i + 1) % kNumPhilosophers]),
 ref(permits), ref(permitsLock));
 }
 for (thread& p: philosophers) p.join();
 return 0;
}

16

Tickets, Please…

static void philosopher(size_t id, mutex& left, mutex&
right, size_t& permits, mutex& permitsLock) {
 for (size_t i = 0; i < kNumMeals; i++) {
 think(id);
 eat(id, left, right, permits, permitsLock);
 }
}

A philosopher thinks and eats, and repeats this 3 times.

17

Tickets, Please…
static void eat(size_t id, mutex& left, mutex& right,
size_t& permits, mutex& permitsLock) {

 waitForPermission(permits, permitsLock);
 left.lock();
 right.lock();
 cout << oslock << id << " starts eating om nom nom
nom." << endl << osunlock;
 sleep_for(getEatTime());
 cout << oslock << id << " all done eating." << endl
 << osunlock;
 grantPermission(permits, permitsLock);
 left.unlock();
 right.unlock();
}

18

grantPermission
To put a permit back, increment the counter by 1 and continue.

static void grantPermission(size_t& permits, mutex&
permitsLock) {
 permitsLock.lock();
 permits++;
 permitsLock.unlock();
}

19

waitForPermission
• If there are permits, decrement the counter by 1 and continue
• If there aren’t permits, wait for a permit, then decrement by 1 and continue

static void waitForPermission(size_t& permits, mutex&
permitsLock) {
 while (true) {
 permitsLock.lock();
 if (permits > 0) break;
 permitsLock.unlock();
 // wait a little while (how??)
 }
 permits--;
 permitsLock.unlock();
}

20

waitForPermission
• If there are permits, decrement the counter by 1 and continue
• If there aren’t permits, wait for a permit, then decrement by 1 and continue

static void waitForPermission(size_t& permits, mutex&
permitsLock) {
 while (true) {
 permitsLock.lock();
 if (permits > 0) break;
 permitsLock.unlock();
 sleep(??);
 }
 permits--;
 permitsLock.unlock();
}

This is called busy
waiting (bad). We are
unnecessarily and arbitrarily
using CPU time to check
when a permit is available.

21

It would be nice if someone
could let us know when
they return their permit.
Then, we can sleep until

this happens.

22

Plan For Today
• Recap: mutexes and dining philosophers
• Encoding resource constraints
• Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect14 .

23

Condition Variables
A condition variable is a variable type that can be shared across threads and
used for one thread to notify other thread(s) when something happens.
Conversely, a thread can also use this to wait until it is notified by another
thread.
• You make one for each distinct event you need to wait / notify for.
• We can call wait on the condition variable to sleep until another thread signals

this condition variable.
• You call notify_all on the condition variable to send a notification to all waiting

threads and wake them up.
• Analogy: radio station – broadcast and tune in

24

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

25

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

The event here is ”some permits are again available”.

26

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

We can check whether there are permits now
available by checking the permits count.

27

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

28

Condition Variables
int main(int argc, const char *argv[]) {
 mutex forks[kNumForks];
 size_t permits = kNumForks - 1;
 mutex permitsLock;
 condition_variable_any permitsCV;

 thread philosophers[kNumPhilosophers];
 for (size_t i = 0; i < kNumPhilosophers; i++) {
 philosophers[i] = thread(philosopher, i, ref(forks[i]),
 ref(forks[(i + 1) % kNumPhilosophers]),
 ref(permits), ref(permitsCV),
 ref(permitsLock));
 }
 for (thread& p: philosophers) p.join();
 return 0;
}

29

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

When someone returns a permit and there were
no permits available previously, notify all.

30

grantPermission
We must notify all once permits have become available again to wake up waiting
threads.

static void grantPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {
 permitsLock.lock();
 permits++;
 if (permits == 1) permitsCV.notify_all();
 permitsLock.unlock();
}

When someone returns a permit and there were
no permits available previously (meaning some
people might be waiting), notify all.

31

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

If we need a permit but there are none available, wait.

32

waitForPermission (In Progress)
If no permits are available, we must wait until one becomes available.
Key Idea: we must give up ownership of the lock when we wait, so that
someone else can put a permit back.

static void waitForPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

33

grantPermission
Other threads need the lock in order to return permits:

static void grantPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {
 permitsLock.lock();
 permits++;
 if (permits == 1) permitsCV.notify_all();
 permitsLock.unlock();
}

34

waitForPermission (In Progress)
If no permits are available, we must wait until one becomes available.
Key Idea: we must give up ownership of the lock when we wait, so that
someone else can put a permit back.

static void waitForPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

This is the idea for what we want to do – but
there are some additional cases/ quirks we
need to account for.

35

waitForPermission (Final version)
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 while (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

This is the final implementation with the final version of wait() that takes a
mutex parameter and which is called in a while loop. Let’s build our way to this
solution!

36

Deadlock, Round 2
static void waitForPermission(size_t& permits, condition_variable_any&
permitsCV, mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

Spoiler: there is a race condition that could lead to deadlock. What ordering of
events between threads could cause deadlock here? (Hint: if a thread isn’t
waiting, it won’t get a notification from another thread).

37

38

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #2

permits = 0

😋
🍝

PERMIT

39

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #2

permits = 0

🍝

PERMIT

z
z

z

40

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #2

permits = 0

🍝

PERMIT

I need to wait for
a permit in order
to eat.

z
z

z

41

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #2

permits = 0

🍝

PERMIT

I need to wait for
a permit in order
to eat.

z
z

z

42

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #2

permits = 0

😋
🍝

PERMIT

All done eating! I
will return my permit. z

z
z

43

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #2

permits = 1

🙂

All done eating! I
will return my permit. z

z
z

44

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #2

permits = 1

😮

Oh! I should notify
that there is a
permit now.

z
z

z

45

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #2

permits = 1

😲

“Attention waiting
threads, a permit is
available!”

z
z

z

46

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #2

permits = 1

z
z

z

47

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #2

permits = 1

z
z

z

🤨
100 years later

48

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

If we give up the lock before calling wait(), someone could notify before we are
ready, because notifications aren't queued! If that is the last notification, we
may wait forever.

49

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Solution: condition variables are meant for these situations.
• wait() takes a mutex as a parameter
• It will unlock the mutex for us after we are put to sleep.
• When we are notified, it will only return once it has reacquired the mutex for

us.

50

Condition Variable Wait
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

cv.wait() does the following:
1. it puts the caller to sleep and unlocks the given lock, all atomically
2. it wakes up when the cv is signaled
3. upon waking up, it tries to acquire the given lock (and blocks until it's able to do

so)
4. then, cv.wait returns

51

waitForPermission (In progress)
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Spoiler: there is a race condition here that could lead to negative permits if
multiple threads are waiting on a permit (e.g. say we limit permits to 3).

52

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #3

permits = 0

😋
🍝

PERMIT

Thread #2

53

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #3

permits = 0

🍝

PERMIT

Thread #2

z
z

z We need to wait
for a permit in
order to eat.

54

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #3

permits = 0

😋
🍝

PERMIT

Thread #2

z
z

z
z

z
z

All done eating! I
will return my permit.

55

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #3

permits = 1

🙂

Thread #2

z
z

z
z

z
z

All done eating! I
will return my permit.

56

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #3

permits = 1

😮

Thread #2

z
z

z
z

z
z

Oh! I should notify
that there is a
permit now.

57

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #3

permits = 1

😲

Thread #2

z
z

z
z

z
z

“Attention waiting
threads, a permit is
available!”

58

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #3

permits = 1

Thread #2

z
z

z

🤩
z

z
z

59

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #3

permits = 1

Thread #2

z
z

z

🤩
z

z
z

60

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #3

permits = 0

Thread #2

z
z

z
z

z
z

😋
🍝

PERMIT

61

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #3

permits = 0

Thread #2

z
z

z

🍝

PERMIT 🤩
z

z
z

62

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #3

permits = 0

Thread #2

z
z

z

🍝

PERMIT 🤩
z

z
z

63

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Thread #1 Thread #3

permits = <very large number>

Thread #2

z
z

z

🍝

PERMIT 🤔
z

z
z

FAKE
PERMIT

??

64

waitForPermission (In progress)
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Key Problem: if multiple threads are woken up for one new permit, it's possible
that some of them may have to continue waiting for a permit.
Solution: we must call wait() in a loop, in case we must call it again to wait
longer.

65

waitForPermission (Final version)
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 while (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

Key Problem: if multiple threads are woken up for one new permit, it's possible
that some of them may have to continue waiting for a permit.
Solution: we must call wait() in a loop, in case we must call it again to wait
longer.

dining-philosophers-with-cv-wait.cc

67

Condition Variable Key Takeaways
A condition variable is a variable that can be shared across threads and used for
one thread to notify other threads when something happens. Conversely, a
thread can also use this to wait until it is notified by another thread.
• We can call wait(lock) to sleep until another thread signals this condition

variable. The condition variable will unlock and re-lock the specified lock for
us.

• This is necessary because we must give up the lock while waiting so another thread may
return a permit, but if we unlock before waiting, there is a race condition.

• We can call notify_all() to send a signal to waiting threads and wake them up.
• We call wait(lock) in a loop in case we are woken up but must wait longer

• This could happen if multiple threads are woken up for a single new permit, or because
of spurious wakeups.

68

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

69

Recap
• Recap: mutexes and dining philosophers
• Encoding resource constraints
• Condition Variables

Next time: multithreading patterns

cp -r /afs/ir/class/cs111/lecture-code/lect14 .

Lecture 14 takeaway:
Condition variables let us wait
on an event to occur and
notify other threads that an
event has occurred, all
without busy waiting.

