
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 15
Multithreading Patterns

😷 masks strongly
recommended

2

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

3

CS111 Topic 3: Multithreading, Part 1

Multithreading
Introduction

Race
conditions and

locks

Condition
Variables

Multithreading
Patterns

Lecture 12 Lecture 13 Lecture 14 This Lecture

assign4: implement several multithreaded programs while eliminating race conditions!

Topic 3: Multithreading - How can we have concurrency within a single
process? How does the operating system support this?

4

Learning Goals
• Get more practice using both mutexes and condition variables to implement

synchronization logic.
• Learn about the monitor pattern for designing multithreaded code in the

simplest way possible, using classes.

5

Plan For Today
• Recap: condition variables and dining philosophers
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

6

Plan For Today
• Recap: condition variables and dining philosophers
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

7

Condition Variables
A condition variable is a variable type that can be shared across threads and
used for one thread to notify other thread(s) when something happens.
Conversely, a thread can also use this to wait until it is notified by another
thread.
• You make one for each distinct event you need to wait / notify for.
• We can call wait(lock) on the condition variable to sleep until another thread

signals this condition variable (no busy waiting). The condition variable will
unlock (at the beginning) and re-lock (at the end) the specified lock for us.
• You call notify_all on the condition variable to send a notification to all waiting

threads and wake them up.
• Analogy: radio station – broadcast and tune in

8

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

9

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

When someone returns a permit and there were
no permits available previously, notify all.

10

grantPermission
We must notify all once permits have become available again to wake up waiting
threads.

static void grantPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {
 permitsLock.lock();
 permits++;
 if (permits == 1) permitsCV.notify_all();
 permitsLock.unlock();
}

When someone returns a permit and there were
no permits available previously (meaning some
people might be waiting), notify all.

11

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

If we need a permit but there are none available, wait.

12

waitForPermission (Final version)
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 while (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

This is the final implementation with the final version of wait() that takes a
mutex parameter and which is called in a while loop.

13

Passing a Lock To CV.wait()
Why do we need to pass our mutex as a parameter to wait()?
• We must release the lock when waiting so someone else can put a permit back

(which requires having the lock)
• But if we release the lock before calling wait, someone else could swoop in and

put a permit back before we call wait(), meaning we will miss the notification!
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 // AIR GAP HERE – someone could acquire the lock before we wait!
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

14

Passing a Lock To CV.wait()
Why do we need to call wait() in a while loop?
• If we are waiting and then woken up by a notification, it’s possible by the time

we exit wait(), there are no permits, so we must wait again.
• Note: wait() reacquires the lock before returning

static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 // by the time we wake up here, all the permits could already be gone!
 }
 permits--;
 permitsLock.unlock();
}

15

Spurious Wakeups
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 while (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

It turns out that in addition to this reason, condition variables can have spurious
wakeups – they wake us up even when not being notified by another thread!
Thus, we should always wrap calls to wait in a while loop.

dining-philosophers-with-cv-wait.cc

16

Plan For Today
• Recap: condition variables and dining philosophers
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

17

Multithreading Patterns
• Writing synchronization code is hard – difficult to reason about, bugs are tricky

if they are hard to reproduce
• E.g. how many locks should we use for a given program?

• Just one? Doesn’t allow for much concurrency
• One lock per shared variable? Very hard to manage, gets complex, inefficient

• Like with dining philosophers, we must consider many scenarios and have lots
of state to track and manage
• One design idea to help: the “monitor” design pattern - associate a single lock

with a collection of related variables, e.g. a class
• That lock is required to access any of those variables

18

Monitor Design Pattern
• For a multithreaded program, we can define a class that encapsulates the key

multithreading logic and make an instance of it in our program.
• This class will have 1 mutex instance variable, and in all its methods we’ll lock

and unlock it as needed when accessing our shared state, so multiple threads
can call the methods
• We can add any other state or condition variables we need as well – but the

key idea is there is one mutex protecting access to all shared state, and which
is locked/unlocked in the class methods that use the shared state.

19

Plan For Today
• Recap: condition variables and dining philosophers
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

20

Bridge Crossing

Let’s write a program that simulates cars crossing a one-lane bridge.
• We will have each car represented by a thread, and they must coordinate as

though they all need to cross the bridge.
• A car can be going either east or west
• All cars on bridge must be travelling in the same direction
• Any number of cars can be on the bridge at once
• A car from the other direction can only go once the coast is clear

One-Lane Bridge

21

Bridge Crossing

static void cross_bridge_east(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going westbound
 driveAcross(); // sleep
 // now we have crossed
}

static void cross_bridge_west(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going eastbound
 driveAcross(); // sleep
 // now we have crossed
}

A car thread would execute one of these two functions:

22

Arriving Eastbound
Key task: a thread needs to wait for it to be clear to cross.

E.g. car going eastbound:
• If other cars are already crossing eastbound, they can go
• If other cars are already crossing westbound, we must wait

“Waiting for an event to happen” -> condition variable!
For going east, we are waiting for the event ”no more cars are going
westbound”.

23

State
What variables do we need to
create to share across threads?
• 1 mutex to lock shared state
• ?? (for going east)
• ?? (for going east)
• ?? (for going west)
• ?? (for going west)

static void cross_bridge_east(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going westbound
 driveAcross(); // sleep
 // now we have crossed
}

static void cross_bridge_west(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going eastbound
 driveAcross(); // sleep
 // now we have crossed
}

Respond on PollEv: pollev.com/cs111fall23
or text CS111FALL23 to 22333 once to join.

24

25

Live Coding: Bridge
Crossing

26

Plan For Today
• Recap: condition variables and dining

philosophers
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

Lecture 15 takeaway: The
monitor pattern combines
procedures and state into a
class for easier management
of synchronization. Then
threads can call its thread-
safe methods!

