
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 16
Trust and Operating Systems + assign4

😷 masks strongly
recommended

2

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111 Lecture
Trust and Operating Systems

Benjamin Xie, Ph.D.
Embedded Ethics Fellow

benjixie@stanford.edu | benjixie.com

Do Now:

1. Say hello to your
neighbor!

2. Think of an OS
you use. Discuss
what you use it
for and how you
trust it. Add any
thoughts on
pollEV!

made with William Grant Ray III, Xiyu Zhang, Liana Keesing,
Swayam Parida, Prof. Nick Troccoli, Prof. John Ousterhout

Respond on PollEv: pollev.com/cs111fall23
or text CS111FALL23 to 22333 once to join.

3

4

Hi, I’m Benji!
Why I’m here: Embedding ethics into CS
courses (14 so far!)
Research: human-data interactions
(computing education + HCI research)
My path:
• BS + M.Eng. (“co-term”) in CS at MIT
• Ph.D. at University of Washington
• Embedded Ethics Postdoctoral Fellow at

Stanford HAI, Ethics Center

5

What is an OS that you use?
For what?

How do you trust that OS?

6

Plan For Today
• Motivation: Importance of trust in OS
• What is trust?
• How does trust emerge?
• Example: Trusting Linux

7

Plan For Today
• Motivation: Importance of trust in OS
• What is trust?
• How does trust emerge?
• Example: Trusting Linux

8

Learning Goals
Understand how trust emerges and manifests with operating systems
in given contexts

https://web.archive.org/web/20030407181600/www.openc
roquet.org/downloads/Croquet0.1.pdf

https://www.theatlantic.com/technology/archi
ve/2015/11/programmers-should-not-call-

themselves-engineers/414271/

https://web.archive.org/web/20030407181600/www.opencroquet.org/downloads/Croquet0.1.pdf
https://web.archive.org/web/20030407181600/www.opencroquet.org/downloads/Croquet0.1.pdf
https://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
https://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
https://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/

9

CS111 Ethics Topic: Trust

Long term
support

Trust
(what it is, how

it manifests)

Trust & Race
Conditions Trust in context

Assign 2 This lecture Assign 4 Future
lecture

10

How do we trust OS (open vs closed)?

“The Linux kernel and its entire ecosystem of operating
system distributions are built around the values of

openness, transparency, agility and trustworthiness.
These values are what lay the foundation for modern

software security ”

11

Trust in OS for Standardization
• OS provides efficiency through standardization
• Users rely on technology built on OS
• App developers build off of OS
• Systems programmers make decisions that

ripple far and long

12

Plan For Today
• Motivation: Importance of trust in OS

• OS is public infrastructure of software

• What is trust?
• How does trust emerge?
• Example: Trusting Linux

13

Trust as an unquestioning attitude
• Trust is to stop questioning the dependability of a thing
• Efficiency/safety tradeoff:

• Trust lowers the barriers of monitoring and questioning (more efficient)

• Involves
• Intentions
• Dependence
• Vulnerability/Risk

• Example: what/who did you trust to get to class today?

14

Trusting software is extending agency
• agency: our capacity to take actions that

align with our goals
• “when we trust, we try to make something

a part of our agency... To unquestioningly
trust something is to let it in—to attempt
to bring it inside one’s practical
functioning.”
• Example: glucose monitoring

CT Nguyen: Trust as an unquestioning attitude

https://philarchive.org/rec/NGUTAA

15

Risk: Agential Gullibility
• Trusting more than warranted
• Difficult to b/c software changes, hard to

inspect
• Example: glucose monitoring issues w/

Android update

16

Takeaway: Trust is powerful,
necessary, risky

If I trust people or things (e.g. SW), I …
- Integrate it with my own functioning
- Work more efficiently with them (stop questioning)
- Feel betrayed when they fail us

=> Trust (by extending agency) with great care!

17

Self-assessment on trust
Think back to the person/thing/service you trusted…
How does trusting them extend your agency/functioning?

How might/did you exhibit agential gullibility? (trust more than is warranted)

What would be/was the result of your trust being violated?

18

Self-assessment on trust
Think back to the person/thing/service you trusted… TurboTax Tax Preparation
Software
How does trusting them extend your agency/functioning?
> Able to complete taxes more efficiently and had more confidence I did it
correctly.
How might/did you exhibit agential gullibility? (trust more than is warranted)
> Tricked into paying for service even though it was legally supposed to be free.
What would be/was the result of your trust being violated?
> Feeling of betrayal. Stopped using software.

Learn more: https://www.propublica.org/article/inside-turbotax-20-year-fight-to-stop-americans-from-filing-their-taxes-for-free

https://www.propublica.org/article/inside-turbotax-20-year-fight-to-stop-americans-from-filing-their-taxes-for-free

19

Plan For Today
• Motivation: Importance of trust in OS

• OS is public infrastructure of software

• What is trust?
• Extending agency to software through unquestioning attitude

• How does trust emerge?
• Example: Trusting Linux

20

Three paths to trust
1. Assumption: trust absent any cluses to warrant it

a. E.g. using unknown third party library b/c deadline nearing

2. Inference: reputation is based on past performance, characteristics,
institutions
a. Some weaker (e.g. trust in brands or affiliation)
b. Some stronger (e.g. past performance)
c. Trust in prior versions of software

3. Substitution: structural arrangements that partly replace need for trust
a. Often involves separation of code, responsibilities
b. E.g. user permissions of file system, keeping personal info off work accounts, devices

Paul B. de Laat: How can contributors to open-source communities be trusted? On the assumption, inference, and
substitution of trust

21

Self-assessment on how trust
manifests

Identify one person/thing/service that you trust by…

Assumption (trust absent clues to warrant it)

Inference (trust from evidence of past performance, characteristics, institutions)

Substitution (structural arrangement to partly decrease the need for trust)

22

Self-assessment on how trust
manifests

Identify one person/thing/service that you trust by…

Assumption (trust absent clues to warrant it)
> Anyone warning me about imminent danger (e.g. “look out for the car!”)

Inference (trust from evidence of past performance, characteristics, institutions)
> Password management service (inferred trust based on online reviews, review
of privacy policy)

Substitution (structural arrangement to partly decrease the need for trust)
> Keep some important passwords stored locally and not on app

23

Plan For Today
• Motivation: Importance of trust in OS

• Trust amongst tech users, app developers, and OS developers is intertwined

• What is trust?
• Extending agency to software

• How does trust emerge?
• Assumption, inference, substitution

• Example: Trusting Linux

24

Linux is hard to trust

1.1 million commits

13.9k
contributors

8+ million
lines of code

25

Users Trusting Linux
- Why: People use Linux-based tools to extend their agency

- Android smartphones
- 13.6% of servers
- Almost all supercomputers

- How trust emerges?
- Assumption

- “never thought about it”
- ”no other option”

- Inference
- open source
- previous use

- Substitution
- Redundant security protocols (e.g. strong password, isolate/encrypt sensitive files)

26

App Developers Trusting Linux
- Why: Standardization and tools of OS enable efficiency

- High cost to build and maintain new OS
- Familiar => lowers learning time developers

- How trust emerges?
- Assumption: rare given affordances to infer trust
- Inference

- Used by other app developers (lots of stars on GitHub)
- trust Linus Torvalds

- Substitution
- code is open source (read it, fork it)
- Add “redundant” checks in code (ex: spurious wakeup)

27

Systems Programmers Trusting Linux
- Why: No single person can build & maintain an OS. Need to extend agency to

others to support.
- How trust emerges?

- Assumption: rarely happens
- Inference

- Known in community
- Quality of previous code submissions

- Substitution
- Formalization: tools and procedures to streamline cooperation
- Division of roles
- Decision making: Linus has final authority

“I don’t like the idea of
having developers do their own
updates in my kernel source
tree. (...)
“there really aren’t that many
people that I trust enough to
give write permissions to the
kernel tree.”
– Linus Torvalds

28

Abstractions as way to substitute trust
strlcat: size bound string copying &
concatenation

Since 1998 (few changes since)

curl: tool for transferring data from or
to a server using URLs. (used by 20 bil.)

Trust is getting harder b/c
code complexity beyond
comprehension of single

person.
(example of substitution:

SOLID, Barbara Liskov)

https://linux.die.net/man/3/strlcat
https://curl.se/docs/manpage.html

29

Old does not (necessarily) mean
trustworthy!

• SOCKS5: enables anonymous
network communication (e.g. when
using Tor to access internet, VPNs)

• Hostname can only be 255 bytes
• Bug introduced where long

hostname (e.g.
https://aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/)
overflows buffer that stores

https://daniel.hax
x.se/blog/2023/10
/11/how-i-made-a-
heap-overflow-in-

curl/#comments

• Bug existed for 3.6 yrs
• Resolution: patch made (throw

error), test case added
• Robust substitution: rewriting in

memory-safe language (Rust)

““Every human make mistake but spotting the
mistake, acknowledging it and explaining it to

a wide audience takes a very good human…
this makes Curl even more trustable than

before.”

- commenter on dev blogpost

https://aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/
https://daniel.haxx.se/blog/2023/10/11/how-i-made-a-heap-overflow-in-curl/
https://daniel.haxx.se/blog/2023/10/11/how-i-made-a-heap-overflow-in-curl/
https://daniel.haxx.se/blog/2023/10/11/how-i-made-a-heap-overflow-in-curl/
https://daniel.haxx.se/blog/2023/10/11/how-i-made-a-heap-overflow-in-curl/
https://daniel.haxx.se/blog/2023/10/11/how-i-made-a-heap-overflow-in-curl/

30

Recap
1. Trust amongst tech users, app

developers, and system
programmers is intertwined

2. Trust is about extending agency,
enabling “unquestioning attitude”

3. Trust emerges through assumption,
inference, substitution

4. Linux kernel to used broadly and
large, so users, app developers,
system programmers must trust
through inference and substitution

5. Can design ways to (partially)
substitute need to trust

Ethics takeaway: Trust is
often required, powerful, and
dangerous. Key design
challenge is how we design
structures that enable us to
substitute trust.
Benjamin Xie, Ph.D.
Embedded Ethics Fellow
benjixie@stanford.edu | benjixie.com

31

assign4
Assignment 4 consists of an ethics exploration + implementing 2 monitor pattern
classes for 2 multithreaded programs.

32

Unique Locks
• It is common to acquire a lock and hold onto it until the end of some scope

(e.g. end of function, end of loop, etc.).
• There is a convenient variable type called unique_lock that when created can

automatically lock a mutex, and when destroyed (e.g. when it goes out of
scope) can automatically unlock a mutex.
• Particularly useful if you have many paths to exit a function and you must

unlock in all paths.

33

leave_eastbound
We lock at the beginning of this function and unlock at the end.

void Bridge::leave_eastbound(size_t id) {
 bridge_lock.lock();
 n_crossing_eastbound--;
 if (n_crossing_eastbound == 0) {
 none_crossing_eastbound.notify_all();
 }
 print(id, "crossed", true);
 bridge_lock.unlock();
}

34

leave_eastbound
We lock at the beginning of this function and unlock at the end.

void Bridge::leave_eastbound(size_t id) {
 unique_lock<mutex> lock(bridge_lock);
 n_crossing_eastbound--;
 if (n_crossing_eastbound == 0) {
 none_crossing_eastbound.notify_all();
 }
 print(id, "crossed", true);
}

Auto-locks permitsLock here

35

leave_eastbound
We lock at the beginning of this function and unlock at the end.

void Bridge::leave_eastbound(size_t id) {
 unique_lock<mutex> lock(bridge_lock);
 n_crossing_eastbound--;
 if (n_crossing_eastbound == 0) {
 none_crossing_eastbound.notify_all();
 }
 print(id, "crossed", true);
}

Auto-unlocks permitsLock
here (goes out of scope)

36

arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {
 bridge_lock.lock();
 print(id, "arrived", true);
 while (n_crossing_westbound > 0) {
 none_crossing_westbound.wait(bridge_lock);
 }
 n_crossing_eastbound++;
 print(id, "crossing", true);
 bridge_lock.unlock();
}

37

arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {
 unique_lock<mutex> lock(bridge_lock);
 print(id, "arrived", true);
 while (n_crossing_westbound > 0) {
 none_crossing_westbound.wait(lock);
 }
 n_crossing_eastbound++;
 print(id, "crossing", true);
}

Auto-locks permitsLock here

38

arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {
 unique_lock<mutex> lock(bridge_lock);
 print(id, "arrived", true);
 while (n_crossing_westbound > 0) {
 none_crossing_westbound.wait(lock);
 }
 n_crossing_eastbound++;
 print(id, "crossing", true);
}

Use it with CV instead of original lock (it has
wrapper methods for manually locking/unlocking!)

39

arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {
 unique_lock<mutex> lock(bridge_lock);
 print(id, "arrived", true);
 while (n_crossing_westbound > 0) {
 none_crossing_westbound.wait(lock);
 }
 n_crossing_eastbound++;
 print(id, "crossing", true);
}

Auto-unlocks permitsLock
here (goes out of scope)

40

Assign4 Data Structures
• Data structures can be used to store condition variables or state
• Structs also helpful to bundle state together and make multiple instances of

structs
• Key note: condition variables cannot be copied. E.g. cannot create a

condition variable and push onto vector. Consider how pointers might help!

41

Recap
• Trust and Operating Systems
• assign4

Next time: how does the OS run and
switch between threads?

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

Lecture 16 takeaway: Trust
is often required, powerful,
and dangerous. Key design
challenge is how we design
structures that enable us to
substitute trust. For assign4,
you’ll explore these topics
and use the monitor pattern
to write multithreaded
programs.

