
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 20
Implementing Locks and Condition Variables

😷 masks recommended

2

CS111 Topic 3: Multithreading, Part 2

Dispatching Scheduling

Preemption
and

Implementing
Locks

Implementing
Locks and
Condition
Variables

Lecture 17 Lecture 18 Lecture 19

assign5: implement your own version of thread, mutex and condition_variable!

This Lecture

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

3

Learning Goals
• See how our understanding of thread dispatching/scheduling allows us to fully

implement locks
• Understand the general design for how to implement condition variables

4

Plan For Today
• Recap: Preemption and Locks so far
• Implementing Locks
• Implementing Condition Variables
• assign5

5

Plan For Today
• Recap: Preemption and Locks so far
• Implementing Locks
• Implementing Condition Variables
• assign5

6

Preemption and Interrupts
On assign5, you’ll implement a dispatcher with scheduling using the Round
Robin approach.
• Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run
code every X microseconds.
• Fires a timer interrupt at specified interval

Idea: we can use the timer handler to trigger a context switch!
(For simplicity, on assign5 we’ll always do a context switch when the timer fires)

7

Interrupts
When the timer handler is called, it’s called with (all) interrupts disabled. Why?
To avoid a timer handler interrupting a timer handler. (Interrupts are global
state).
When the timer handler finishes, interrupts are re-enabled.
// within timer code

// (omitted) timer disables interrupts here
your_timer_handler();
// (omitted) timer re-enables interrupts here

Problem: because we context switch in the middle of the timer handler, when
we start executing another thread for the first time, we will have interrupts
disabled and the timer won’t be heard anymore!

8

Enabling Interrupts
Solution: manually enable interrupts when a thread is first run.
void other_func() {
 intr_enable(true); // provided func to enable/disable
 while (true) {
 cout << "Other thread here! Hello." << endl;
 }
}

You’ll need to do this on assign5 when a thread is first run.

9

Interrupts
What about when we switch to a thread that we’ve already run before? Do we
need to enable interrupts there too?

No – if a thread is paused that means when it was previously running, the timer
handler was called and it context-switched to another thread. Therefore, when
that thread resumes, it will resume at the end of the timer handler, where
interrupts are re-enabled.

10

Implementing Locks
Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
• Track whether it is locked / unlocked
• The lock “owner” (if any) – perhaps combine with first bullet
• A list of threads waiting to get this lock

11

Lock
1. If this lock is unlocked, mark it as locked by the current thread
2. Otherwise, add the current thread to the back of the waiting queue

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
}

12

Unlock
1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::unlock() {
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove()); // add to ready queue
 }
}

13

Race Conditions
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);

 // block/switch to next
 // ready thread
 blockThread();
 }
}

void Lock::unlock() {
 if (q.empty()) {
 locked = 0;
 } else {
 // add to ready queue
 unblockThread(q.remove());
 }
}

One possible problem: thread 1 is in the middle of
getting ownership, but then the timer fires, we
switch to thread 2, and it locks the mutex. Then
thread 1 resumes and also gets the mutex.

14

Plan For Today
• Recap: Preemption and Locks so far
• Implementing Locks
• Implementing Condition Variables
• assign5

15

Locks and Race Conditions
We can have race conditions within the thing that helps us prevent race
conditions? How are we supposed to fix that?
• We can’t use a mutex, because we’re writing the code to implement it!
• We need to disable interrupts – for a single-core system, this is sufficient to

guarantee that no other thread will run.

16

Where should we enable/disable
interrupts?

// Instance variables
int locked = 0;
ThreadQueue q;

1 void Lock::lock() {
2 if (!locked) {
3 locked = 1;
4 } else {
5 q.add(currentThread);
6 blockThread(); // block/switch to next ready thread
7 }
8 }

Respond on PollEv: pollev.com/cs111fall23
or text CS111FALL23 to 22333 once to join.

17

18

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 intr_enable(false);
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 intr_enable(true); // ??
 blockThread(); // block/switch to next ready thread
 }
}

There’s an air gap where we could
switch to another thread after re-
enabling interrupts but before we
block. That other thread could be
the current owner – it could unlock
the mutex and mark us as ready,
but then we resume and block
forever!

19

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 intr_enable(false);
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 intr_enable(true); // ??
 blockThread(); // block/switch to next ready thread
 }
}

Possible scenario (2 threads):
1. Thread #1 locks mutex
2. Thread #2 locks mutex, adds

itself to the queue, enables
interrupts

3. Right before thread #2 blocks,
thread #1 unlocks the mutex
and unblocks thread #2

4. Thread #2 then proceeds to
block.

5. Nobody unblocks thread #2 L

20

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 intr_enable(false);
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
 intr_enable(true);
}

Instead, we must re-enable
interrupts at the end of lock(). This
means that once a thread unblocks
to acquire the lock, it wakes up
after blockThread() and re-enables
interrupts.

21

Unlock
1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::unlock() {
 intr_enable(false);
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove()); // add to ready queue
 }
 intr_enable(true);
}

Problem: what if someone calls
these when interrupts are already
disabled? This will re-enable them,
which the caller won’t want!

22

Disabling/Enabling Interrupts
void importantFunc() {
 intr_enable(false);
 ...
 myLock.unlock();
 ...
 intr_enable(true);
}

void Lock::unlock() {
 intr_enable(false);
 ...
 intr_enable(true);
}

Oops - interrupts are
re-enabled here,
since unlock re-
enabled them!

23

Disabling/Enabling Interrupts
void Lock::unlock() {
 IntrGuard guard;
 ...
}

IntrGuard is like unique_lock but
for interrupts. It saves the current
interrupt state (enabled/disabled)
when it’s created and turns
interrupts off. When it is deleted, it
restores interrupts to the saved
state.

Key idea: if interrupts are already
disabled when an IntrGuard is
created, it keeps them disabled.

24

Unlock
1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove()); // add to ready queue
 }
}

25

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
}

What happens when we switch to
the next ready thread? Interrupts
will be disabled! Is that a problem?

26

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
}

What happens when we switch to
the next ready thread? Interrupts
will be disabled! Is that a problem?

Key Idea: we know that every
possible way a thread resumes (e.g.
timer or inside lock), it will re-
enable interrupts. Therefore, this
isn’t a problem.

27

The Interrupt Handshake
So far, we have seen how when switching to another thread, the current thread
disables interrupts before context switching, and the new thread re-enables
them.
• Scenario 1: current thread enters timer handler, disables interrupts, context

switches. New thread resumes in timer handler, exits, re-enables interrupts.
• Scenario 2: current thread enters timer handler, disables interrupts, context

switches. New thread runs for first time, but manually enables interrupts at
start.

Now, new possible way to context switch – from within lock. But this fits the
same pattern – when switching away, interrupts are disabled, and when we
switch back, we re-enable interrupts.

28

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON🔓

29

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔓
Interrupts

OFF

30

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔓
Interrupts

OFF

31

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔒
Interrupts

OFF

32

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON🔒

33

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON🔒

Timer! ⏰

34

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Enter timer handler, where
interrupts are disabled at start.

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔒
Interrupts

OFF

35

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Enter timer handler, where
interrupts are disabled at start.

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Resume in timer handler, where
interrupts are re-enabled at end.

🔒
Interrupts

OFF

36

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON🔒

37

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔒
Interrupts

OFF

38

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔒
Interrupts

OFF

39

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔒
Interrupts

OFF

40

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔒
Interrupts

OFF

41

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Resume in timer handler, where
interrupts are re-enabled at end.

Thread #2 (blocked)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔒
Interrupts

OFF

42

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2 (blocked)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON🔒

43

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2 (blocked)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔒
Interrupts

OFF

44

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔒
Interrupts

OFF

45

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON🔒

46

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔒

Timer! ⏰

Interrupts
ON

47

Enabling/Disabling Interrupts
Thread #1 (running)
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Enter timer handler, where
interrupts are disabled at start.

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔒
Interrupts

OFF

48

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

🔒
Interrupts

OFF

49

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON🔒

50

Interrupts
On assign5, there are various places where interrupts can cause complications.
• This sounds like a race condition problem we can solve with mutexes!....right?
• Not in this case – because we are the OS, and we implement mutexes! And

they rely on the thread dispatching code in this assignment.
• Therefore, the mechanism for avoiding race conditions in our Thread and

Mutex/Condition Variable implementations is to enable/disable interrupts
when we don’t want to be interrupted (e.g. by timer).
• E.g. we could be in the middle of adding to the ready queue, but then the

timer fires and we go to remove something from the ready queue!
• Interrupts are a global state – not per-thread.
• We’re assuming a single-core machine, where disabling interrupts is sufficient

to guarantee no other thread will run.

51

Yield
Another trigger that may switch threads is a function you will implement called
yield.
• Yield is an assign5 function that can be called by a thread to give up the CPU

voluntarily even though it can still do work (how considerate!)
• When you implement yield, the same idea applies for interrupt re-enabling as

for the timer handler.

52

Plan For Today
• Recap: Preemption and Locks so far
• Implementing Locks
• Implementing Condition Variables
• assign5

53

Implementing Condition Variables
Now that we understand how thread dispatching/scheduling works, we can
write our own condition variable implementation! Condition variables need to
block threads (functionality the dispatcher / scheduler provides).

wait(mutex& m)
notify_one()
notify_all()

What does the design of a condition variable look like? What state does it
need?

54

wait
1. Should atomically put the thread to sleep and unlock the specified lock
2. When that thread wakes up, it should reacquire the specified lock before

returning

55

notify_one and notify_all
notify_one
• Should wake up/unblock the first waiting thread (we are guaranteeing FIFO in

our implementation)

notify_all
• Should wake up/unblock all waiting threads

For both: if no-one waiting, does nothing.

56

Plan For Today
• Recap: Preemption and Locks so far
• Implementing Locks
• Implementing Condition Variables
• assign5

57

assign5
• Implement Thread, Mutex and Condition
• Mutex and Condition will use public methods from your Thread class
• Use new C++ features: static and initialization lists

58

Plan For Today
• Recap: Preemption and Locks so far
• Implementing Locks
• Implementing Condition Variables
• assign5

Next time: Virtual Memory

Lecture 20 takeaway: Locks
consist of a waiting queue
and redispatching to make
threads sleep. Condition
variables also need to make
threads sleep until they are
notified.

