
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 21
Virtual Memory Introduction

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 8

😷 masks recommended

2

Topic 4: Virtual Memory - How
can one set of memory be shared
among several processes? How
can the operating system manage
access to a limited amount of
system memory?

3

CS111 Topic 4: Virtual Memory
Virtual Memory - How can one set of memory be shared among several
processes? How can the operating system manage access to a limited amount of
system memory?

Why is answering this question important?
• We can understand one of the most “magical” responsibilities of OSes –

making one set of memory appear as several!
• Exposes challenges of allowing multiple processes share memory while

remaining isolated
• Allows us to understand exactly what happens when a program accesses a

memory address
assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

4

CS111 Topic 4: Virtual Memory

Virtual
Memory

Introduction

Dynamic
Address

Translation

Demand
Paging

The Clock
Algorithm

Today Lecture 22 Lecture 24

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

Lecture 23

5

Learning Goals
• Understand the goals of sharing memory
• Reason about the tradeoffs in implementing memory sharing mechanisms
• Understand what impact virtual memory has on our programs

6

Plan For Today
• Goals of sharing memory
• Single-tasking
• Load-time relocation
• Introducing virtual memory
• Dynamic address translation

• Approach #1: Base and Bound

cp -r /afs/ir/class/cs111/lecture-code/lect21 .

7

Plan For Today
• Goals of sharing memory
• Single-tasking
• Load-time relocation
• Introducing virtual memory
• Dynamic address translation

• Approach #1: Base and Bound

cp -r /afs/ir/class/cs111/lecture-code/lect21 .

8

Sharing Memory
So far, we’ve seen how the OS can run multiple threads or processes
concurrently by sharing CPU cores (e.g. taking turns with a single core). Another
key sharing aspect: they must share a limited amount of system memory.

9

Virtual memory is a
mechanism for multiple

processes to
simultaneously use system

memory.

10

Sharing Memory
What are our goals for sharing memory?
• Multitasking – allow multiple processes to be memory-resident at once
• Transparency – no process should need to know memory is shared. Each

must run regardless of the number and/or locations of processes in memory.
• Isolation – processes must not be able to corrupt each other
• Efficiency (both of CPU and memory) – shouldn’t be degraded badly by sharing

To understand how we can share memory, let’s first look at what a single
process’s memory needs are.

11

Plan For Today
• Goals of sharing memory
• Single-tasking
• Load-time relocation
• Introducing virtual memory
• Dynamic address translation

• Approach #1: Base and Bound

cp -r /afs/ir/class/cs111/lecture-code/lect21 .

12

Single-Tasking
Let’s start with a system that can just run one user
process at a time. What does memory look like?
• A process’s memory is a collection of segments

(sections)
• Code (“text”) – program code
• Data – constants, heap
• Stack – stack frames for functions
• Stack grows down, heap grows up as more space is

needed

(for Unix/Linux – Windows essentially the same)

Code

0

∞

Data

Stack

13

Single-Tasking
Let’s start with a system that can just run one user
process at a time. What does memory look like?
• The OS also needs memory space!
• Reserve highest memory addresses for OS
• Problem: rogue programs could mess with OS

memory, corrupt the system

Challenge: to run multiple processes, how can we
split up memory to give each process space?

Code

0

∞

Data

Stack

Operating
System

14

Pre-virtual-memory-idea
#1: Let’s reserve contiguous
blocks in memory for each

process.

15

Plan For Today
• Goals of sharing memory
• Single-tasking
• Load-time relocation
• Introducing virtual memory
• Dynamic address translation

• Approach #1: Base and Bound

cp -r /afs/ir/class/cs111/lecture-code/lect21 .

16

Load-Time Relocation
• When a process is loaded to run, place it in a

designated memory space.
• That memory space is for everything for that process –

stack/data/code
• Interesting fact – when a program is compiled, it is

compiled assuming its memory starts at address 0.
Therefore, we must update its addresses when we load
it to match its real starting address.
• Use first-fit or best-fit allocation to manage available

memory. Process 1

0

∞

Process 3

Operating
System

Process 6

What are the problems
with this approach?

17

Load-Time Relocation
What are the problems with this approach?
• No isolation – one process can corrupt another or the

OS
• Must decide process memory size ahead of time
• Challenges with allocating memory for new processes –

memory fragmentation
• Can’t grow regions if adjacent space is in use
• Can’t move once we load the process
• Need to update pointers in executable before running Process 1

0

∞

Process 3

Operating
System

Process 6

18

Idea #2: What if, instead of
translating addresses when
a program is loaded, the OS
intercepted every memory
reference and handled it?

19

Plan For Today
• Goals of sharing memory
• Single-tasking
• Load-time relocation
• Introducing virtual memory
• Dynamic address translation

• Approach #1: Base and Bound

cp -r /afs/ir/class/cs111/lecture-code/lect21 .

20

Introducing Virtual Memory
Virtual memory is a mechanism that allows multiple processes to
simultaneously use system memory.
• Program addresses are virtual (fake) – the OS maps them to physical (real)

addresses in memory.
• The OS must keep track of virtual -> physical “translations” and translate every

memory access.
• The OS doesn’t need to map all virtual addresses unless needed – it can give

programs new memory on the fly
• The OS can even temporarily kick memory contents to disk until a program

needs it again.
• Example of virtualization – making one thing look like another, or many of

them

21

Demo: Virtual Memory
Implications

memory.c and htop

cp -r /afs/ir/class/cs111/lecture-code/lect21 .

22

Introducing Virtual Memory
Virtual memory is a mechanism that allows multiple processes to
simultaneously use system memory.

Three key questions:
• Why do we even need to have the OS intercepting memory addresses?
• How does the OS translate from virtual to physical addresses?
• What are the tradeoffs in different virtual memory implementations?

23

Plan For Today
• Goals of sharing memory
• Single-tasking
• Load-time relocation
• Introducing virtual memory
• Dynamic address translation

• Approach #1: Base and Bound

cp -r /afs/ir/class/cs111/lecture-code/lect21 .

24

Dynamic Address Translation
Let’s have the OS intercept every memory reference a process makes.
• The OS can prohibit processes from accessing certain addresses (e.g. OS

memory or another process’s memory)
• Gives the OS lots of flexibility in managing memory
• Every process can now think that it is located starting at address 0
• The OS will translate each process’s address to the real one it’s mapped to

Problem: intercepting and translating every memory reference is expensive!
How can we do this?
Solution: hardware support

25

Dynamic Address Translation
We will add a memory management unit (MMU) in hardware that changes
addresses dynamically during every memory reference.
• Virtual address is what the program sees
• Physical address is the actual location in memory

Core MMU Memory
Virtual address Physical address

data

26

Dynamic Address Translation
Key Idea: there are now two views of memory, and they can look very different:
• Virtual address space is what the program sees
• Physical address space is the actual allocation of memory

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

Process B Virtual
Address Space

Code
0

∞

Data

Stack

27

Dynamic Address Translation
• Transparency – virtual addresses allow a program’s view of memory to be

different than the real view; doesn’t know its memory is e.g., split up.
• Isolation – OS intercepts memory references and can prevent rogue accesses

Key question: how does the MMU translate from a virtual address to a physical
address? We’ll see several different approaches over the next few lectures.

28

Dynamic Address Translation
Key question: how do the MMU / OS translate from virtual addresses to physical
ones? Three designs we’ll consider:
1. Base and bound
2. Multiple Segments
3. Paging

29

Plan For Today
• Goals of sharing memory
• Single-tasking
• Load-time relocation
• Introducing virtual memory
• Dynamic address translation

• Approach #1: Base and bound

cp -r /afs/ir/class/cs111/lecture-code/lect21 .

30

Approach #1: Base and Bound
Key Idea: Let’s use the load-time relocation idea of contiguous allocation, but
with the MMU.
• Every process’s virtual address space is mapped to a contiguous region of

physical memory.
• When a program accesses a virtual address, translate it by adding the base for

that process – the physical address its memory really starts at.
• We specify the process’s memory size by setting a bound for it; if a process

accesses an an invalid virtual address >= bound, OS triggers an error.

31

Approach #1: Base and Bound
• “base” is physical address starting point – corresponds to virtual address 0
• “bound” is one greater than the highest allowable virtual memory address
• Each process has own base/bound. Stored in PCB and loaded into two

registers when running.

On each memory reference:
• Compare virtual address to bound, trap if >= (invalid memory reference)
• Otherwise, add base to virtual address to produce physical address

32

Approach #1: Base and Bound
Example: let’s say process A has base = 1000, bound = 5000. What happens if:
• It accesses virtual address 6000? Invalid memory reference.
• It accesses virtual address 0? Accesses physical address 1000.

33

Approach #1: Base and Bound
Example: let’s say process A has base = 1000, bound = 5000. What happens if:
• It accesses virtual address 6000? Invalid memory reference.
• It accesses virtual address 0? Accesses physical address 1000.

34

Approach #1: Base and Bound
Example: let’s say process B has base = 6000, bound = 2000. What happens if:
• It accesses virtual address 6000?
• It accesses virtual address 1000?

Respond on PollEv: pollev.com/cs111fall23
or text CS111FALL23 to 22333 once to join.

35

36

Approach #1: Base and Bound
Example: let’s say process B has base = 6000, bound = 2000. What happens if:
• It accesses virtual address 6000? Invalid memory reference.
• It accesses virtual address 1000? Accesses physical address 7000.

37

Approach #1: Base and Bound
• Key idea: each process appears to have a completely private memory whose

size is determined by the bound register.
• The only physical address is in the base register, controlled by the OS. Process

sees only virtual addresses!
• OS can update a process’s base/bound if needed! E.g. it could move physical

memory to a new location or increase bound.

38

Approach #1: Base and Bound
What are some benefits of this approach?
• Inexpensive translation – just doing addition
• Doesn’t require much additional space – just per-process base + bound
• The separation between virtual and physical addresses means we can move

the physical memory location and simply update the base, or we could even
swap memory to disk and copy it back later when it’s actually needed.

What are some drawbacks of this approach?
• One contiguous region per program
• Fragmentation
• Growing can only happen upwards with the bound
• Doesn’t support read-only regions of memory within a process

39

Recap
• Introducing virtual memory
• Single-tasking
• Goals of sharing memory
• Load-time relocation
• Dynamic address translation

• Approach #1: Base and Bound

Next time: more about dynamic
address translation

Lecture 21 takeaway: Virtual
memory is a mechanism that
allows multiple processes to
simultaneously use system
memory. There are two
views of memory: virtual and
physical. The hardware
MMU translates from virtual
to physical addresses. Base
and bound is one approach to
implement virtual memory.

