
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 27
Wrap-Up / What’s Next?

😷 masks recommended

2

Plan For Today
• Recap: Where We’ve Been
• Big Ideas
• What’s Next?
• Q&A

3

Plan For Today
• Recap: Where We’ve Been
• Big Ideas
• What’s Next?
• Q&A

4

We’ve covered a lot in just
10 weeks! Let’s take a look

back.

5

Our CS111 Journey

Filesystems

Crash
Recovery

Multiprocessing

Multithreading

Scheduling /
Dispatching

Implementing
Locks /

Condition
Variables

Virtual
Memory

Modern
Technologies

and OSes

6

Course Overview
1. Filesystems - How can we design filesystems to manage files on disk, and

what are the tradeoffs inherent in designing them? How can we interact
with the filesystem in our programs?

2. Multiprocessing - How can our program create and interact with other
programs? How does the operating system manage processes?

3. Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

4. Virtual Memory - How can one set of memory be shared among several
processes? How can the operating system manage access to a limited
amount of system memory?

5. Modern Technologies and OSes - How do hardware advances impact the
design of operating systems?

7

The operating system sits between the hardware and user programs. It
manages shared resources and provides functionality for programs to run.
It manages things like:
• Processor (CPU): decides what program gets to do work and for how long
• Memory (RAM): decides what programs get to use what areas of memory
• Hard Drive: decides how the disk is used to store files

First Day: What is an Operating System?

Operating System

User Programs

Hardware (memory, hard drive, processor, etc.)

8

In CS111 we are going to explore both “sides” of operating systems:
• We’ll learn what functionality is exported by operating systems to make the

programs that we write more powerful.
• We’ll learn how the operating system provides that functionality and how it

acts as an interface to the computer hardware.

Operating System

User Programs

Hardware (memory, hard drive, processor, etc.)

First Day: What is CS111?

9

Operating Systems
Why is it useful to know about operating systems?
• Understanding computing at this level demystifies how these seemingly-

complex systems work and can aid future projects you work on.
• OSes contain many examples of elegant ideas in computing (concurrency,

virtualization) that apply well beyond OSes, and pull together ideas like data
structures, algorithms, languages, etc.
• We can learn how we can maximally take advantage of the hardware and

operating system software available to us in our programs.
• Operating Systems are constantly evolving and encountering new applications

(e.g., large datacenters) and new challenges

10

Filesystems
Key Question: How can we design filesystems to manage files on disk, and what
are the tradeoffs inherent in designing them? How can we interact with the
filesystem in our programs?

• Various design approaches such as
contiguous allocation, linked files, FAT,
and multi-level indexes, each with
tradeoffs around fragmentation, file
access, and amount of metadata
• Crash recovery adds additional questions
• We can use file descriptors to read/write

files in our own programs.
Unix Filesystem Inode Design [source]

https://people.cs.rutgers.edu/~pxk/416/notes/13-fs-studies.html

11

Filesystems
Why does this matter?
• Great example of the challenges and tradeoffs in designing large systems
• Shows us how we can directly manipulate files in our programs and what really

happens when we open a file.
• Glimpse at hardware challenges/limitations – hard drives vs. flash storage

12

Multiprocessing
Key Question: How can our program create and interact with other programs?
How does the operating system manage processes?

• We can use fork/waitpid/execvp/pipe to
spawn, coordinate, and run other programs in
another process.
• The OS has a Process Control Block for each

process and could run processes in any order!

13

Multiprocessing
Why does this matter?
• First look at concurrency challenges – we don’t know the order in which

processes will execute, and this can impact our code.
• Shows us how shells work!

Chrome Site Isolation [source]

https://developers.google.com/web/updates/2018/09/inside-browser-part1

14

Multithreading
Key Question: How can we have concurrency within a single process? How does
the operating system support this?

• We can spawn threads to have concurrency
in a single process, but this presents many
challenges with synchronization, race
conditions and deadlock.
• The OS tracks and schedules threads (not

processes) to run, and switches between
them periodically.
• There are various designs for deciding which

thread to run next (round robin, SRPT, etc.)
https://commons.wikimedia.org/wiki/File:An_ill
ustration_of_the_dining_philosophers_problem.p

ng

15

Multithreading
Why does this matter?
• Multithreading can allow us to maximally take advantage of hardware

(multicore processors)
• Multithreading has many applications in modern software (e.g. app

background download thread, parallelizing spreadsheet recalculation, web
server parallelization)
• Helps us understand the behavior of our computers – how even single-core

machines can appear to multitask
• Deeper dive into concurrency challenges both in user programs and the OS –

synchronization is hard! Use only where necessary, and techniques like
monitor pattern can help.

16

Managing Concurrency
• Processes and threads
• Creating, dispatching
• Synchronization: races, inconsistency, locks, condition variables, monitors,

implementations of locks / condition variables
• Scheduling
• Interrupts
• Deadlock

17

Virtual Memory
Key Question: How can one set of memory be shared among several processes?
How can the operating system manage access to a limited amount of system
memory?

• Virtual memory gives each process its
own isolated virtual address space,
and the OS maps what’s needed to
real physical memory.
• The OS can manage physical memory

however it wants, including swapping
pages to disk if it needs to. Code

0

∞

Data

Stack

0

∞

Virtual Physical

18

Virtual Memory
Why does this matter?
• Powerful example of virtualization – virtual memory creates a world (virtual

address space) that doesn’t really exist!
• We write our own programs assuming tons of contiguous memory – now we

know how this is really enabled.
• Helps us understand the behavior of our computers – thrashing, swap, etc.

19

Modern Technologies and OSes
Key Question: How do hardware advances impact the design of operating
systems?
We saw two examples:
• Multicore impacts on scheduling and locks
• Flash storage impacts on filesystems

Why does this matter?
• See examples of how OSes sit at hardware-software boundary – hardware

changes can change OSes
• We can more fully understand the impacts of modern technologies on our

devices

20

Ethics and Trust
Key Question: Who/what do we trust, how do we decide, and what do we do
when that trust is not upheld?

Why does this matter?
• A vital ethical lens through which we can examine large systems such as OSes;

immense scale and impact, relied on by many, hard to maintain and debug.
• We must trust some things/people/organizations; important to reflect on what

we trust and what we value in choosing who/what to trust

21

Plan For Today
• Recap: Where We’ve Been
• Big Ideas
• What’s Next?
• Q&A

22

Big Ideas
• Interplay between technology and OSes: OS at hardware-software boundary
• Designing with tradeoffs: not always one “best” way – evaluating pros/cons along

with priorities
• Virtualization: make one thing look like something else, or many of them
• Managing concurrency: synchronization is hard!
• Locality: the past often predicts the future (scheduling, paging, block cache, etc.)
• Atomic operations: take a collection of operations and make them appear as a single

indivisible operation (synchronization, file system consistency)
• Layering: building higher-level abstractions to hide details (e.g. monitors, file system

layers, file descriptors, etc.)
• System builders wrangle complexity – solve complex problems with simple

interfaces that others can build on (e.g. virtual memory, filesystems)

23

Plan For Today
• Recap: Where We’ve Been
• Big Ideas
• What’s Next?
• Q&A

24

After CS111, you are
prepared to take a variety
of classes in various areas.

What are some options?

25

Next Steps in Similar Areas
• CS143 (compilers) – how is a compiler implemented?

• Model program as a tree
• Go from code -> assembly

• CS144 (networking) – how can applications communicate over a network?
• How can we transmit data across an unreliable network?
• How does data get to its intended destination?

• CS145 (databases) – design and use of databases (including transactions,
logging)
• CS149 (parallel computing) – further explore concurrency / challenges in

writing parallel software
• CS155 (security) – how can we find/fix vulnerabilities and improve security?

26

CS112
Key question: how is an operating system implemented?
• Write parts of a real operating system called Pintos – real code in the OS!
• 4 significant projects, done in groups:

1. Threads
2. User programs (e.g. system calls)
3. Virtual memory
4. Filesystems

• Projects are challenging, but very rewarding
• CS112 is just the “assignments” part of CS140/CS212

Additional option: CS140E – more hardware-oriented course instead of CS112
(140E is to 112 as 107E is to 107)

27

Other Courses
• CS240 (requires CS112) – Advanced Topics in OSes (old/new papers on OS

developments)
• CS244B (requires CS144) – Distributed Systems
• CS190 (requires CS112) – Software Design

28

Other Courses
• CS152: Trust and Safety Engineering
• CS166: Data Structures
• CS181: Computers, Ethics, and Public Policy
• CS182: Ethics, Public Policy, and Technological Change
• CS221: Artificial Intelligence
• CS246: Mining Massive Datasets
• EE108: Digital Systems Design
• EE180: Digital Systems Architecture

29

Plan For Today
• Recap: Where We’ve Been
• Big Ideas
• What’s Next?
• Q&A

30

Thank you!

31

Course Evaluations
We hope you can take the time to fill out the end-quarter course evaluation
once it’s available. We sincerely appreciate any feedback you have about the
course and read every piece of feedback we receive. We are always looking for
ways to improve! http://course-evaluations.stanford.edu/

Thank you!

http://course-evaluations.stanford.edu/

32

Q&A: What questions do
you have?
Respond on PollEV

Respond on PollEv: pollev.com/cs111fall23
or text CS111FALL23 to 22333 once to join.

