
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 4
Unix V6 Filesystem, Continued

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 13.1-13.2

😷 masks strongly
recommended

2

Topic 1: Filesystems - How can
we design filesystems to manage files
on disk, and what are the tradeoffs
inherent in designing them? How
can we interact with the filesystem in
our programs?

3

CS111 Topic 1: Filesystems

Filesystems
introduction and

design

Case study: Unix
V6 Filesystem

Filesystem
System calls and
file descriptors

Crash recovery

Lecture 2 Lecture 3 / Today Lecture 5 Lectures 6-7

assign1: implement portions of the Unix v6 filesystem!

Key Question: How can we design filesystems to manage files on disk, and what are
the tradeoffs inherent in designing them? How can we interact with the filesystem in
our programs?

4

Learning Goals
• Explore the design of the Unix V6 filesystem
• Understand the design of the Unix v6 filesystem in how it represents

directories
• Practice with the full process of going from file path to file data

5

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup

6

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup

7

Unix V6 Filesystem
Every file has an associated inode. An inode has space for up to 8 block
numbers for file payload data, and this block number space is used differently
depending on whether the file is “small mode” or “large mode”

if ((inode.i_mode & ILARG) != 0) { // file is “large mode”

8

Small File Scheme
If the file is small, i_addr stores direct block numbers: numbers of blocks that
contain payload data.

index 0 1 2 3 4 5 6 7

i_addr 341 33 124 … … … … …

File
Part 0

Block 341

File
Part 1

Block 33

File
Part 2

Block 124 To know how many of
the 8 numbers are
used, we can look at the
size stored in the inode.

9

Large File Scheme
If the file is large, the first 7 entries in i_addr are singly-indirect block numbers
(block numbers of blocks that contain direct block numbers). The 8th entry (if
needed) is a doubly-indirect block number (the number of a block that contains
singly-indirect block numbers).

index 0 1 2 3 4 5 6 7

i_addr 444 22 34 792 168 976 2467 555

126, 98, 70, 127,
1252, …

Block 444

File Part
0

Block 126
1352, 567, …

Block 555

File Part
1,792

Block 897

… …
897, 4356, 6791,
…

Block 1352

10

Large File Scheme
Another way to think about it: a file can be represented using at most 7 + 256 =
263 singly-indirect blocks. The first seven are stored in the inode. The
remaining 256 are stored in a block whose block number is stored in the inode.

126, 98, 70, 127,
1252, …

Block 444

File Part
0

Block 126
1352, 567, …

Block 555

File Part
1,792

Block 897

… …
897, 4356, 6791,
…

Block 1352

index 0 1 2 3 4 5 6 7

i_addr 444 22 34 792 168 976 2467 555

11

Large File Scheme
An inode for a large file stores 7 singly-indirect block numbers and 1 doubly-
indirect block number. What is the largest file size this supports? Each block
number is 2 bytes big.

(7+256) singly-indirect block numbers total x
256 block numbers per singly-indirect block x
512 bytes per block

= ~34MB

12

Large File Scheme
An inode for a large file stores 7 singly-indirect block numbers and 1 doubly-
indirect block number. What is the largest file size this supports? Each block
number is 2 bytes big.

OR:
(7 * 256 * 512) + (256 * 256 * 512) ~ 34MB
(singly indirect) + (doubly indirect)

Better! still not sufficient for today's standards, but perhaps in 1975. Moreover,
since block numbers are 2 bytes, we can number at most 216 - 1 = 65,535 blocks,
meaning the entire filesystem can be at most 65,535 * 512 ~ 32MB.

13

Inodes
• Files only use the block numbers they need (depending on their size)
• Note: doubly-indirect is useful (and there are many other possible designs!),

but it means even more steps to access data.

14

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup

15

Doubly-Indirect Addressing
What is the smallest file size (in bytes) that would require using the doubly-
indirect block to store its data?

Respond on PollEv: pollev.com/cs111fall23
or text CS111FALL23 to 22333 once to join.

16

17

Doubly-Indirect Addressing
What is the smallest file size (in bytes) that would require using the doubly-
indirect block to store its data?

Files up to (7 * 256 * 512) bytes are representable using just the 7 singly-
indirect blocks. Files of (7 * 256 * 512) + 1 or more bytes would need the
doubly-indirect block as well.

18

Doubly-Indirect Addressing

Inode 16:
• ”large mode”
• size = 18,855,234
• i_addr = [26,35,32,50,58,22,59,30]

Assume we have a the following inode. How do we find the block containing the
start of its payload data? How about the remainder of its payload data?

Block # … 2 … 26 … 30 … 80 … 87 … 89

Block
contents …

Inode
table
start

…

80,41,82,85,
103, 24,45,…

…

87,114,47,48,
122,99,111,

543,…
…

It was the best
of times, it
was the worst
of times… …

89,448,234,99,
…

…

“My father,”
exclaimed
Lucie, “you
are ill!”

Step 1: Go to block 26 and read block numbers.
For the first number, 80, go to block 80 and read
the beginning of the file (the first 512 bytes).
Then go to block 41 for the next 512 bytes, etc.

19

Doubly-Indirect Addressing

Inode 16:
• ”large mode”
• size = 18,855,234
• i_addr = [26,35,32,50,58,22,59,30]

Assume we have a the following inode. How do we find the block containing the
start of its payload data? How about the remainder of its payload data?

Block # … 2 … 26 … 30 … 80 … 87 … 89

Block
contents …

Inode
table
start

…

80,41,82,85,
103, 24,45,…

…

87,114,47,48,
122,99,111,

543,…
…

It was the best
of times, it
was the worst
of times… …

89,448,234,99,
…

…

“My father,”
exclaimed
Lucie, “you
are ill!”

Step 2: After 256 blocks, go to block 35, repeat
the process. Do this a total of 7 times, for blocks
26, 35, 32, 50, 58, 22, and 59, reading 1792
blocks.

20

Doubly-Indirect Addressing

Inode 16:
• ”large mode”
• size = 18,855,234
• i_addr = [26,35,32,50,58,22,59,30]

Assume we have a the following inode. How do we find the block containing the
start of its payload data? How about the remainder of its payload data?

Block # … 2 … 26 … 30 … 80 … 87 … 89

Block
contents …

Inode
table
start

…

80,41,82,85,
103, 24,45,…

…

87,114,47,48,
122,99,111,

543,…
…

It was the best
of times, it
was the worst
of times… …

89,448,234,99,
…

…

“My father,”
exclaimed
Lucie, “you
are ill!”

Step 3: Go to block 30, which is a doubly-
indirect block. From there, go to block 87, which
is an indirect block. From there, go to block 89,
which is the 1793rd (256*7 + 1) block.

21

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup

22

Now we understand how files
are stored. But how do

we find them?

23

The Directory Hierarchy
Filesystems usually support directories ("folders")
• A directory can contain files and more directories
• A directory is a file container. It needs to store information about what

files/folders are contained within it.
• On Unix/Linux, all files live within the root directory, "/"
• We can specify the location of a file via the path to it from the root directory

(“absolute path”):

/classes/cs111/index.html

Common filesystem task: given a filepath, get the file's contents.

24

Directories
Key idea: Unix V6 directories are what map filenames to inode numbers in the
filesystem. Filenames are not stored in inodes; they are stored in directories.
Thefore, file lookup must happen via directories.

A Unix V6 directory contains an unsorted list of 16 byte “directory entries”. Each
entry contains the name and inode number of one thing in that directory.

struct direntv6 {
 uint16_t d_inumber;
 char d_name[14];
};

23 myfile.txt

54 song.mp3

1245 otherFolder

…

25

Directories
Unix V6 directories contain lists of 16 byte “directory entries”. Each entry
contains the name and inode number of one thing in that directory.
• The first 14 bytes are the name (not necessarily null-terminated!)
• The last two bytes are the inumber

struct direntv6 {
 uint16_t d_inumber;
 char d_name[14];
};

23 myfile.txt

54 song.mp3

1245 prez.pptx

…

26

How can we use this
directory representation to
translate from a filepath to

its inode number?

27

The Lookup Process

/classes/cs111/index.html

Start at the
root directory

28

The Lookup Process

/classes/cs111/index.html

In the root
directory,
find the
entry named
"classes".

29

The Lookup Process

/classes/cs111/index.html

In the "classes"
directory, find
the entry
named "cs111".

30

The Lookup Process

/classes/cs111/index.html

In the "cs111"
directory, find the
entry named
"index.html". Then
read its contents.

31

Directories
How can we store directories on disk?
• Directories store directory entries – could be many entries
• Directories also have associated metadata (size, permissions, creation date, …)

Key idea: let’s model a directory as a file. We’ll pretend it’s a “file” whose
contents are its directory entries! Each directory will have an inode, too.
Key benefit: we can leverage all the existing logic for how files and inodes work,
no need for extra work or complexity!

• Inodes can store a field telling us whether something is a directory or file.
• Directories can be “small mode” or “large mode”, just like files

32

The Lookup Process
The root directory ("/") is set to have inumber 1. That way we always know
where to go to start traversing. (0 is reserved to mean "NULL" or "no inode").

http://stackoverflow.com/questions/2099121/why-do-inode-numbers-start-from-1-and-not-0

33

The Lookup Process

/classes/cs111/index.html

Go to inode with
inumber 1 (root
directory).

34

The Lookup Process

/classes/cs111/index.html

In its payload data,
look for the entry
“classes” and get
its inumber. Go to
that inode.

35

The Lookup Process

/classes/cs111/index.html

In its payload
data, look for
the entry
“cs111” and get
its inumber. Go
to that inode.

36

The Lookup Process

/classes/cs111/index.html

In its payload data,
look for the entry
“index.html” and get
its inumber. Go to that
inode and read in its
payload data.

37

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup

38

Ex.: Finding “/local/files/fairytale.txt”
(small file)

1. go to inode 1. It's small.
We need to look in block
25 for the list of its entries.

2. Look in block 25 for
"local" -> inode 16.

3. Go to inode 16. It's
small. We need to look in
blocks 27/54 for the list of
its entries.

32 33 34

2

32

32

39

Ex.: Finding “/local/files/fairytale.txt”
(small file)

4. Look in block 27 for
"files" (and then 54 if
necessary) -> inode 32.

5. Go to inode 32. It's
small. We need to look in
block 32 for the list of its
entries.

6. Look in block 32 for
"fairytale.txt" -> inode 47.

32 33 34

32

32

2

40

Ex.: Finding “/local/files/fairytale.txt”
(small file)

7. go to inode 47. It's
small. We need to look in
blocks 80,89,87 in order for
its 1,057 bytes of payload
data.32 33 34

32

32

2

41

Ex.: Finding “/medfile” (large file)
1. go to inode 1. It's small.
We need to look in block
25 for the list of its entries.

2. Look in block 25 for
"medfile" -> inode 16.

3. Go to inode 16. It's
large. We need to look in
block 26 for the first 256
payload block numbers.

32 33 34

2

42

Ex.: Finding “/medfile” (large file)
4. Read through numbers
in block 26. First, go to
block 80 for the first 512
payload bytes. Then, go to
block 87 for the second 512
payload bytes.

5. After doing this 256
times, go to block 30 and
repeat. Then continue with
all remaining singly-indirect
blocks in the inode.

32 33 34

2

43

Ex.: Finding “/largefile” (large file)
Question: What is the
number of the block that
stores the first 512 bytes of
largefile?

32 33 34

2

44

Ex.: Finding “/largefile” (large file)
1. go to inode 1. It's small.
We need to look in block
25 for the list of its entries.

2. Look in block 25 for
"largefile" -> inode 16.

3. Go to inode 16. It's
large. For the first seven
block numbers, go to those
blocks and read their 256
block numbers to get
payload blocks.

32 33 34

2

45

Ex.: Finding “/largefile” (large file)
4. For the eighth block, go
to block 30. For each block
number, go to that block
and read in its block
numbers to get payload
blocks.

First payload block number
= 80.

32 33 34

2

46

Recap
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup

Next time: how do we interact with the
filesystem in our programs?

Lecture 4 takeaway: The
Unix V6 Filesystem
represents directories as
files, with payloads
containing directory entries.
Lookup begins at the root
directory for absolute paths.

