
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 5
File Descriptors and System Calls

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 13.1-13.2

😷 masks strongly
recommended

2

Topic 1: Filesystems - How can
we design filesystems to manage files
on disk, and what are the tradeoffs
inherent in designing them? How
can we interact with the filesystem in
our programs?

3

CS111 Topic 1: Filesystems

Filesystems
introduction and

design

Case study: Unix
V6 Filesystem

Filesystem
System calls and
file descriptors

Crash recovery

Lecture 2 Lecture 3-4 Today Lectures 6-7

assign1: implement portions of the Unix v6 filesystem!

Key Question: How can we design filesystems to manage files on disk, and what are
the tradeoffs inherent in designing them? How can we interact with the filesystem in
our programs?

4

Learning Goals
• Evaluate the tradeoffs of the Unix v6 Filesystem design overall
• Learn about the open, close, read and write functions that let us interact with

files
• Get familiar writing programs that read, write and create files
• Learn what the operating system manages for us so that we can interact with

files

5

Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .

6

Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .

7

Recap From Last Time
• Small files have up to 8 direct block numbers stored in their inode
• Large files have up to 7 singly-indirect and 1 doubly-indirect block number

stored in their inode
• Directories are “just files” and are layered on top of files. Directories store

directory entries, which contain info about each file/folder directly within that
directory. Note: name is at most 14 bytes, which may not be null terminated!
• The lookup process traverses through each directory in the path until we reach

the file we’re looking for (or don’t find it)

8

Unix V6 Filesystem
We built layers on top of the low-level readSector and writeSector to implement
a higher-level filesystem. We encountered several design ideas:
• Modularity –subdivision of a larger system into a collection of smaller

subsystems, which themselves may be further subdivided
• Layering –the organization of several modules that interact in some

hierarchical manner where each layer typically only opens its interface to the
module above it
• Name resolution – system resolves human-friendly names (paths) to machine-

friendly names (inumbers). Names let us refer to system resources.
• Virtualization – making one thing look like another (e.g. disk is just an array of

sectors)

9

Unix V6 Filesystem
The Unix V6 Filesystem is one example of a “multi-level index” filesystem design.
• What are the benefits / drawbacks of the Unix V6 Filesystem design?

Advantages
• Can access all block numbers for a file
• Still supports easy sequential access
• Easy to grow files

10

Unix V6 Filesystem
The Unix V6 Filesystem is one example of a “multi-level index” filesystem design.
• What are the benefits / drawbacks of the Unix V6 Filesystem design?

Disadvantages
• More steps and disk reads to get block data for large files
• More disk space taken up by metadata
• Upper limit on file size (though if larger than disk, doesn’t matter)
• Size change requires restructuring the inode

11

Multi-level Indexes
There are many alternative designs that could be used – some alterations you
could propose might be:
• What if the block size was different?
• What if inodes stored a different number of block numbers?
• What if the file size scheme (small / large) worked differently?

Example: 4.3 BSD Unix filesystem (evolutionary descendent of V6)
• 4Kb block size
• Inodes store 14 block numbers
• First 12 block numbers always direct, 13th always singly indirect, 14th always

doubly indirect (no small vs. large schemes)

12

Other Filesystem Design Ideas
Larger block size? Improves efficiency of I/O and inodes but worsens internal
fragmentation. Generally: challenges with both large and small files coexisting.

One idea: multiple block sizes
• Large blocks are 4KB, fragments are 512 bytes (8 fragments fit in a block)
• The last block in a file can be a fragment (0-7 fragments)
• One large block can hold fragments from multiple files
• Get the time efficiency benefit of larger blocks, but the internal fragmentation

benefit of smaller blocks (small files can use fragments)

13

Filesystem Techniques Today
• Filesystem design is a hard problem! Tradeoffs, challenges with large and small

files.
• Even larger block sizes (16KB large blocks, 2KB fragments) – disk space cheap,

internal fragmentation doesn’t matter as much
• Reallocate files as blocks grow – initially allocate blocks one at a time, but

when a file reaches a certain size, reallocate blocks looking for large contiguous
clusters
• ext4 is a popular current Linux filesystem – you may notice similarities!
• NTFS (replacement for FAT) is the current Windows filesystem
• APFS (“Apple Filesystem”) is the filesystem for Apple devices

https://opensource.com/article/17/5/introduction-ext4-filesystem

14

Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .

15

OS vs. User Mode
• The operating system runs code in a privileged “kernel mode” where it can do

things and access data that regular user programs cannot. E.g. only OS can call
readSector.
• System tracks whether it is in “user mode” or “kernel mode”
• The OS provides public functions that we can call in our user programs –

system calls. When these functions are called, it switches over to “kernel
mode”.

16

System Calls
Functions to interact with the operating system are part of a group of functions
called system calls.
• A system call is a public function provided by the operating system.
• The operating system handles these tasks because they require special

privileges that we do not have in our programs. When a system call runs, it
runs in kernel mode, and we switch back to user mode when it’s done.
• The operating system kernel runs the code for a system call, completely

isolating the system-level interaction from your (potentially harmful) program.
• We are going to examine the system calls for interacting with files. When

writing production code, you will often use higher-level methods that build on
these (like C++ streams or FILE *), but let's see how they work!

17

open()

Call open to open a file:

int open(const char *pathname, int flags);

• pathname: the path to the file you wish to open
• flags: a bitwise OR of options specifying the behavior for opening the file
• returns a file descriptor representing the opened file, or -1 on error

Many possible flags (see manual page for full list). You must include exactly one
of the following flags: O_RDONLY (read-only), O_WRONLY (write-only),
O_RDWR (read and write). These say how you will use the file in this program.
Another useful flag: O_TRUNC means if the file exists already, truncate (clear) it.

18

open()

Call open to open a file:

int open(const char *pathname, int flags, mode_t mode);

You can also create a new file if the specified file doesn’t exist, by including
O_CREAT as one of the flags. You must also specify a third mode parameter.
• mode: the permissions to attempt to set for a created file

19

open()

Call open to open a file:

int open(const char *pathname, int flags, mode_t mode);

You can also create a new file if the specified file doesn’t exist, by including
O_CREAT as one of the flags. You must also specify a third mode parameter.
• mode: the permissions to attempt to set for a created file

Another useful flag: O_EXCL, which says the file must be created from scratch,
and to fail if the file already exists.

Aside: how are there multiple signatures for open in C? See here.

https://stackoverflow.com/questions/15151396/open-system-call-polymorphism

20

File Descriptors
A file descriptor is like a "ticket number" representing your currently-open file.
• It is a unique number assigned by the operating system to refer to that file in

this program.
• Each program has its own file descriptors
• When you wish to refer to the file (e.g. read from it, write to it) you must

provide the file descriptor.
• file descriptors are assigned in ascending order (next FD is lowest unused)
• The OS remembers information associated with each of your file descriptors,

like where in the file you currently are (if reading/writing)

21

close()

Call close to close a file when you’re done with it:

int close(int fd);

• fd: the file descriptor you'd like to close.

It's important to close files when you are done with them to preserve system
resources.
• You can use valgrind to check if you forgot to close any files. (--track-fds=yes)

22

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
 int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

 // If an error occurs, print out an error message
 if (fd == -1) {
 printf("There was a problem creating \"%s\"!\n", argv[1]);
 return 1;
 }

 // Close the file now that we are done with it
 close(fd);
 return 0;
}

touch.c

23

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
 int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

 // If an error occurs, print out an error message
 if (fd == -1) {
 printf("There was a problem creating \"%s\"!\n", argv[1]);
 return 1;
 }

 // Close the file now that we are done with it
 close(fd);
 return 0;
}

Open the
f ile to be

writ ten to

touch.c

24

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
 int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

 // If an error occurs, print out an error message
 if (fd == -1) {
 printf("There was a problem creating \"%s\"!\n", argv[1]);
 return 1;
 }

 // Close the file now that we are done with it
 close(fd);
 return 0;
}

If the f ile
doesn’t

exist, create
it

touch.c

25

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
 int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

 // If an error occurs, print out an error message
 if (fd == -1) {
 printf("There was a problem creating \"%s\"!\n", argv[1]);
 return 1;
 }

 // Close the file now that we are done with it
 close(fd);
 return 0;
}

If it does
exist, throw

an error

touch.c

26

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
 int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

 // If an error occurs, print out an error message
 if (fd == -1) {
 printf("There was a problem creating \"%s\"!\n", argv[1]);
 return 1;
 }

 // Close the file now that we are done with it
 close(fd);
 return 0;
}

If we create a new f ile, it should
have these permissions (don’t

worry about specif ics for now)

touch.c

27

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
 int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

 // If an error occurs, print out an error message
 if (fd == -1) {
 printf("There was a problem creating \"%s\"!\n", argv[1]);
 return 1;
 }

 // Close the file now that we are done with it
 close(fd);
 return 0;
}

touch.c

28

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
 int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

 // If an error occurs, print out an error message
 if (fd == -1) {
 printf("There was a problem creating \"%s\"!\n", argv[1]);
 return 1;
 }

 // Close the file now that we are done with it
 close(fd);
 return 0;
}

touch.c

Specify how
we are going
to use this
f ile in this
program

29

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
 int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

 // If an error occurs, print out an error message
 if (fd == -1) {
 printf("There was a problem creating \"%s\"!\n", argv[1]);
 return 1;
 }

 // Close the file now that we are done with it
 close(fd);
 return 0;
}

touch.c

Specify
permissions

for
everyone on
disk if this
call creates
a new f ile

30

Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .

31

read()
Call read to read bytes from an open file:

ssize_t read(int fd, void *buf, size_t count);

• fd: the file descriptor for the file you'd like to read from
• buf: the memory location where the read-in bytes should be put
• count: the number of bytes you wish to read
• returns -1 on error, 0 if at end of file, or nonzero if bytes were read

Key idea: read may not read all the bytes you ask it to! The return value tells you how
many were actually read. E.g. if there aren’t that many bytes, or if interrupted)
Key idea #2: the operating system keeps track of where in a file a file descriptor is
reading from. So the next time you read, it will resume where you left off.

32

write()
Call write to write bytes to an open file:

ssize_t write(int fd, const void *buf, size_t count);

• fd: the file descriptor for the file you'd like to write to
• buf: the memory location storing the bytes that should be written
• count: the number of bytes you wish to write from buf
• returns -1 on error, or otherwise the number of bytes that were written

Key idea: write may not write all the bytes you ask it to! The return value tells you
how many were actually written. E.g. if not enough space, or if interrupted)
Key idea #2: the operating system keeps track of where in a file a file descriptor is
writing to. So the next time you write, it will write to where you left off.

33

Example: Copy
Let's write an example program copy that emulates the built-in cp command. It
takes in two command line arguments (file names) and copies the contents of
the first file to the second.
E.g. ./copy source.txt dest.txt

1. Open the source file and the destination file and get file descriptors
2. Read each chunk of data from the source file and write it to the destination

file

copy-soln.c and copy-soln-full.c (with error checking)

34

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

int main(int argc, char *argv[]) {
 int sourceFD = open(argv[1], O_RDONLY);
 int destinationFD = open(argv[2],
 O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

 copyContents(sourceFD, destinationFD);

 close(sourceFD);
 close(destinationFD);
 return 0;
}

35

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

int main(int argc, char *argv[]) {
 int sourceFD = open(argv[1], O_RDONLY);
 int destinationFD = open(argv[2],
 O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

 copyContents(sourceFD, destinationFD);

 close(sourceFD);
 close(destinationFD);
 return 0;
}

”create the file to write to, and
it must not already exist”

36

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
 // Goal: while there’s more data from source, read the next
 // chunk and write it to the destination.
}

37

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
 char buffer[kCopyIncrement];
 ...
}

Read in chunks of
kCopyIncrement bytes

38

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
 char buffer[kCopyIncrement];
 while (true) {
 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
 if (bytesRead == 0) break;

 ...
 }
}

Read a chunk of bytes. It may
not be kCopyIncrement bytes!
If read returns 0, there are no
more bytes to read.

39

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
 char buffer[kCopyIncrement];
 while (true) {
 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
 if (bytesRead == 0) break;
 size_t bytesWritten = 0;
 while (bytesWritten < bytesRead) {
 ...
 }
 }
}

Now we write this chunk of
bytes to the destination file.
We must loop until write
writes them all.

40

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
 char buffer[kCopyIncrement];
 while (true) {
 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
 if (bytesRead == 0) break;
 size_t bytesWritten = 0;
 while (bytesWritten < bytesRead) {
 ssize_t count = write(destinationFD, buffer + bytesWritten,
 bytesRead - bytesWritten);
 bytesWritten += count;
 }
 }
}

Since write may write only
some of the bytes, we need to
just give it the rest of the bytes
that it hasn’t written yet.

41

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
 char buffer[kCopyIncrement];
 while (true) {
 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
 if (bytesRead == 0) break;
 size_t bytesWritten = 0;
 while (bytesWritten < bytesRead) {
 ssize_t count = write(destinationFD, buffer + bytesWritten,
 bytesRead - bytesWritten);
 bytesWritten += count;
 }
 }
}

48

Recap
• Recap: filesystem design and modern

filesystems
• Interacting with the filesystem in user

programs
• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files

Lecture 5 takeaway: System
calls are functions provided
by the operating system to do
tasks we cannot do ourselves.
open, close, read and write
are 4 system calls that work
via file descriptors to work
with files.

