
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 8
Multiprocessing Introduction

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 4

😷 masks strongly
recommended

2

Topic 2: Multiprocessing - How
can our program create and
interact with other programs?
How does the operating system
manage user programs?

3

CS111 Topic 2: Multiprocessing
Mul$processing - How can our program create and interact with other
programs? How does the opera4ng system manage user programs?

Why is answering this ques1on important?
• Helps us understand how programs are spawned and run (e.g. shells, web

servers)
• Introduces us to the challenges of concurrency – managing concurrent events
• Allows us to understand how shells work and implement our own!

assign3: implement your own shell program!

4

CS111 Topic 2: Multiprocessing

Multiprocessing
Introduction

Managing
processes and
running other

programs

Inter-process
communication

with pipes

Today Lecture 9 Lecture 10 / 11

assign3: implement your own shell!

5

Learning Goals
• Learn how to use the fork() function to create a new process
• Understand how a process is cloned and run by the OS
• Learn how to use waitpid() to wait for a child process to finish.

6

Plan For Today
• Multiprocessing overview
• Introducing fork()
• Cloning Processes
• waitpid() and waiting for child processes

cp -r /afs/ir/class/cs111/lecture-code/lect8 .

7

Plan For Today
• Mul$processing overview
• Introducing fork()
• Cloning Processes
• waitpid() and wai1ng for child processes

cp -r /afs/ir/class/cs111/lecture-code/lect8 .

8

Process 5621

Multiprocessing Terminology
Program: code you write to execute tasks
Process: an instance of your program running; consists of program and
execution state.

Key idea: multiple processes can run the same program

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 printf("Goodbye!\n");
 return 0;
}

9

Multiprocessing
Your computer runs many processes simultaneously - even with just 1 processor
core (how?)
• "simultaneously" = switch between them so fast humans don't notice
• Your program thinks it's the only thing running
• OS schedules tasks - who gets to run when
• Each gets a little time, then has to wait
• Many times, waiting is good! E.g. waiting for key press, waiting for disk
• Caveat: multicore computers can truly multitask

10

Playing with Processes
When you run a program from the terminal, it runs in a new process.
• The OS gives each process a unique "process ID" number (PID)
• PIDs are useful once we start managing multiple processes
• getpid() returns the PID of the current process (pid_t is a numeric type)

// getpid.c
#include <stdio.h>
#include <unistd.h>
int main(int argc, char *argv[]) {
 pid_t myPid = getpid();
 printf("My process ID is %d\n", myPid);
 return 0;
}

$./getpid
My process ID is 18814

$./getpid
My process ID is 18831

11

Plan For Today
• Multiprocessing overview
• Introducing fork()
• Cloning Processes
• waitpid() and waiting for child processes

cp -r /afs/ir/class/cs111/lecture-code/lect8 .

12

Fork is a system call that
creates a second process which

is a clone of the first.

13

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 fork();
 printf("Goodbye!\n");
 return 0;
}

Process A

$./myprogram

14

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 fork();
 printf("Goodbye!\n");
 return 0;
}

Process A

$./myprogram
Hello, world!

15

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 fork();
 printf("Goodbye!\n");
 return 0;
}

Process A

$./myprogram
Hello, world!

16

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 fork();
 printf("Goodbye!\n");
 return 0;
}

Process A
int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 fork();
 printf("Goodbye!\n");
 return 0;
}

Process B

$./myprogram
Hello, world!

17

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 fork();
 printf("Goodbye!\n");
 return 0;
}

Process A
int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 fork();
 printf("Goodbye!\n");
 return 0;
}

Process B

$./myprogram
Hello, world!
Goodbye!
Goodbye!

18

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
 int x = 2;
 printf("Hello, world!\n");
 fork();
 printf("Goodbye, %d!\n", x);
 return 0;
}

Process A

$./myprogram

19

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
 int x = 2;
 printf("Hello, world!\n");
 fork();
 printf("Goodbye, %d!\n", x);
 return 0;
}

Process A

$./myprogram
Hello, world!

20

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
 int x = 2;
 printf("Hello, world!\n");
 fork();
 printf("Goodbye, %d!\n", x);
 return 0;
}

Process A
int main(int argc, char *argv[]) {
 int x = 2;
 printf("Hello, world!\n");
 fork();
 printf("Goodbye, %d!\n", x);
 return 0;
}

Process B

$./myprogram
Hello, world!

21

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
 int x = 2;
 printf("Hello, world!\n");
 fork();
 printf("Goodbye, %d!\n", x);
 return 0;
}

Process A
int main(int argc, char *argv[]) {
 int x = 2;
 printf("Hello, world!\n");
 fork();
 printf("Goodbye, %d!\n", x);
 return 0;
}

Process B

$./myprogram
Hello, world!
Goodbye, 2!
Goodbye, 2!

22

fork()
fork() creates a second process that is a clone of the first: pid_t fork();
• parent (original) process forks off a child (new) process
• The child starts execu1on on the next program instruc1on. The

parent con$nues execu1on with the next program instruc1on. The order from
now on is up to the OS!
• fork() is called once, but returns twice (why?)

Illustration courtesy of Roz Cyrus.

23

fork()
fork() creates a second process that is a clone of the first: pid_t fork();
• parent (original) process forks off a child (new) process
• A child process could also then later call fork, thus being a parent
• Everything is duplicated in the child process (except PIDs are different)

• File descriptor table - this explains how the child can still output to the same terminal!
• Mapped memory regions (the address space) - regions like stack, heap, etc. are copied

24

fork()

int main(int argc, char *argv[]) {
 int x = 2;
 printf("Hello, world!\n");
 fork();
 printf("Goodbye, %d!\n", x);
 return 0;
}

Process A
int main(int argc, char *argv[]) {
 int x = 2;
 printf("Hello, world!\n");
 fork();
 printf("Goodbye, %d!\n", x);
 return 0;
}

Process B

(Am I the parent
or the child?)

Is there a way for the processes to tell which is the parent and which is the child?

25

fork()
Key Idea: the return value of fork() is different in the parent and the child.

fork() creates a second process that is a clone of the first: pid_t fork();
• parent (original) process forks off a child (new) process
• In the parent, fork() will return the PID of the child (only way for parent to get

child's PID)
• In the child, fork() will return 0 (this is not the child's PID, it's just 0)
• This allows us to assign different tasks to the parent and child

26

fork()
In the parent, fork() will return the PID of the child. In the child, fork() will
return 0 (this is not the child's PID, it's just 0).

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 pid_t pidOrZero = fork();
 printf("fork returned %d\n",
 pidOrZero);
 return 0;
}

Process 111

$./myprogram

27

fork()
In the parent, fork() will return the PID of the child. In the child, fork() will
return 0 (this is not the child's PID, it's just 0).

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 pid_t pidOrZero = fork();
 printf("fork returned %d\n",
 pidOrZero);
 return 0;
}

Process 111

$./myprogram
Hello, world!

28

fork()
In the parent, fork() will return the PID of the child. In the child, fork() will
return 0 (this is not the child's PID, it's just 0).

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 pid_t pidOrZero = fork();
 printf("fork returned %d\n",
 pidOrZero);
 return 0;
}

Process 111
int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 pid_t pidOrZero = fork();
 printf("fork returned %d\n",
 pidOrZero);
 return 0;
}

Process 112

$./myprogram
Hello, world!

29

fork()
In the parent, fork() will return the PID of the child. In the child, fork() will
return 0 (this is not the child's PID, it's just 0).

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 pid_t pidOrZero = fork();
 printf("fork returned %d\n",
 pidOrZero);
 return 0;
}

Process 111
int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 pid_t pidOrZero = fork();
 printf("fork returned %d\n",
 pidOrZero);
 return 0;
}

Process 112

$./myprogram
Hello, world!
fork returned 112
fork returned 0

30

fork()
In the parent, fork() will return the PID of the child. In the child, fork() will
return 0 (this is not the child's PID, it's just 0).

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 pid_t pidOrZero = fork();
 printf("fork returned %d\n",
 pidOrZero);
 return 0;
}

Process 111
int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 pid_t pidOrZero = fork();
 printf("fork returned %d\n",
 pidOrZero);
 return 0;
}

Process 112

$./myprogram
Hello, world!
fork returned 112
fork returned 0

$./myprogram
Hello, world!
fork returned 0
fork returned 112

OR

31

We can no longer assume
the order in which our

program will execute! The
OS decides the order.

32

fork()
• In the parent, fork() will return the PID of the child
• In the child, fork() will return 0 (this is not the child's PID, it's just 0)
• if fork() returns < 0, that means an error occurred
• getppid() gets the PID of your parent and getpid() gets your own PID
• This is how your shell works – shell (parent) forks off child process to run a

command you enter. When you run a command, its parent is the shell.

33

fork()

$./intro-fork
Hello from process 29686! (parent 29351)
Bye from process 29686! (parent 29351)
Bye from process 29687! (parent 29686)

$./intro-fork
Hello from process 29688! (parent 29351)
Bye from process 29689! (parent 29688)
Bye from process 29688! (parent 29351)

int main(int argc, char *argv[]) {
 printf("Hello from process %d! (parent %d)\n", getpid(), getppid());
 pid_t pidOrZero = fork();
 assert(pidOrZero >= 0);
 printf("Bye from process %d! (parent %d)\n", getpid(), getppid());
 return 0;
}

• The parent of the original
process is the shell - the
program that you run in the
terminal.

• The ordering of the parent and
child output is up to the OS!

34

Which of these outputs is not possible?

A)
hello, world!
hello, world!
goodbye! (fork returned 0)
goodbye! (fork returned 112)

C)
hello, world!
goodbye! (fork returned 112)
hello, world!
goodbye! (fork returned 0)

B)
hello, world!
hello, world!
goodbye! (fork returned 112)
goodbye! (fork returned 0)

D)
hello, world!
goodbye! (fork returned 112)
goodbye! (fork returned 0)
hello, world!

// Assume parent PID 111, child PID 112
pid_t pidOrZero = fork();
printf("hello, world!\n");
printf("goodbye! (fork returned %d)\n", pidOrZero);

Respond on PollEv: pollev.com/cs111fall23
or text CS111FALL23 to 22333 once to join.

35

36

Processes all the way down
Even a child process can call fork to spawn its own child process!

• How many total processes are there (including the parent) in this program? 🤯
• How many times is each printf statement printed?

int main(int argc, char *argv[]) {
 printf("Hello!\n");
 fork();
 printf("Howdy!\n");
 fork();
 printf("Hey there!\n");
 return 0;
}

37

Processes all the way down
Even a child process can call fork to spawn its own child process!

• How many total processes are there (including the parent) in this program? 🤯
• How many times is each printf statement printed?

int main(int argc, char *argv[]) {
 printf("Hello!\n");
 fork();
 printf("Howdy!\n");
 fork();
 printf("Hey there!\n");
 return 0;
}

Parent

38

Processes all the way down
Even a child process can call fork to spawn its own child process!

• How many total processes are there (including the parent) in this program? 🤯
• How many times is each printf statement printed?

int main(int argc, char *argv[]) {
 printf("Hello!\n");
 fork();
 printf("Howdy!\n");
 fork();
 printf("Hey there!\n");
 return 0;
}

Parent

Child 1

39

Processes all the way down
Even a child process can call fork to spawn its own child process!

• How many total processes are there (including the parent) in this program? 🤯
• How many times is each printf statement printed?

int main(int argc, char *argv[]) {
 printf("Hello!\n");
 fork();
 printf("Howdy!\n");
 fork();
 printf("Hey there!\n");
 return 0;
}

Parent

Child 1

40

Processes all the way down
Even a child process can call fork to spawn its own child process!

• How many total processes are there (including the parent) in this program? 🤯
• How many times is each printf statement printed?

int main(int argc, char *argv[]) {
 printf("Hello!\n");
 fork();
 printf("Howdy!\n");
 fork();
 printf("Hey there!\n");
 return 0;
}

Parent

Child 1

GChild

Child 2

41

Processes all the way down
Even a child process can call fork to spawn its own child process!

• How many total processes are there (including the parent) in this program? 🤯
• How many times is each printf statement printed?

int main(int argc, char *argv[]) {
 printf("Hello!\n");
 fork();
 printf("Howdy!\n");
 fork();
 printf("Hey there!\n");
 return 0;
}

Parent

Child 1

GChild

Child 2

42

Processes all the way down
Even a child process can call fork to spawn its own child process!

• How many total processes are there (including the parent) in this program? 🤯
• How many times is each printf statement printed?

int main(int argc, char *argv[]) {
 printf("Hello!\n");
 fork();
 printf("Howdy!\n");
 fork();
 printf("Hey there!\n");
 return 0;
}

Parent

Child 1

GChild

Child 2

43

Processes all the way down
Even a child process can call fork to spawn its own child process!

• How many total processes are there (including the parent) in this program? 🤯
• 4

• How many times is each printf statement printed?
• Hello x 1, Howdy x 2, Hey there x 4, could be intermingled

int main(int argc, char *argv[]) {
 printf("Hello!\n");
 fork();
 printf("Howdy!\n");
 fork();
 printf("Hey there!\n");
 return 0;
}

Parent

Child 1

GChild

Child 2

44

Plan For Today
• Multiprocessing overview
• Introducing fork()
• Cloning Processes
• waitpid() and waiting for child processes

cp -r /afs/ir/class/cs111/lecture-code/lect8 .

45

What happens to variables/addresses?
int main(int argc, char *argv[]) {
 char str[128];
 strcpy(str, "Hello");
 printf("str's address is %p\n", str);
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) { // The child should modify str
 printf("I am the child. str's address is %p\n", str);
 strcpy(str, "Howdy");
 printf("I am the child and I changed str to %s. str's address is
 still %p\n", str, str);
 } else { // The parent should sleep and print out str
 printf("I am the parent. str's address is %p\n", str);
 printf("I am the parent, and I'm going to sleep for 2sec.\n");
 sleep(2);
 printf("I am the parent. I just woke up. str's address is %p,
 and its value is %s\n", str, str);
 }
 return 0;
}

fork-copy.c

46

Process Clones

• How can the parent and child use the same address to store different data?
• Each program thinks it is given all memory addresses to use
• The operating system maps these virtual addresses to physical addresses
• When a process forks, its virtual address space stays the same
• The operating system will map the child's virtual addresses to different physical

addresses than for the parent

$./fork-copy
str's address is 0x7ffc8cfa9990
I am the parent. str's address is 0x7ffc8cfa9990
I am the parent, and I'm going to sleep for 2sec.
I am the child. str's address is 0x7ffc8cfa9990
I am the child and I changed str to Howdy. str's address is still
0x7ffc8cfa9990
I am the parent. I just woke up. str's address is 0x7ffc8cfa9990, and its
value is Hello

47

Process Clones

Isn't it expensive to make copies of all memory when forking?
• The operating system only lazily makes copies.
• It will have them share physical addresses until one of them changes its

memory contents to be different than the other.
• This is called copy on write (only make copies when they are written to).

$./fork-copy
str's address is 0x7ffc8cfa9990
I am the parent. str's address is 0x7ffc8cfa9990
I am the parent, and I'm going to sleep for 2sec.
I am the child. str's address is 0x7ffc8cfa9990
I am the child and I changed str to Howdy. str's address is still
0x7ffc8cfa9990
I am the parent. I just woke up. str's address is 0x7ffc8cfa9990, and its
value is Hello

48

Plan For Today
• Multiprocessing overview
• Introducing fork()
• Cloning Processes
• waitpid() and waiting for child processes

cp -r /afs/ir/class/cs111/lecture-code/lect8 .

49

It would be nice if there
was a function we could

call that would "stall" our
program until the child is

finished.

50

waitpid()
A system call that a parent can call to wait for its child to exit:

pid_t waitpid(pid_t pid, int *status, int options);

• pid: the PID of the child to wait on (we'll see other options later)
• status: where to put info about the child's termination (or NULL)
• options: optional flags to customize behavior (always 0 for now)
• the function returns when the specified child process exits
• the return value is the PID of the child that exited, or -1 on error (e.g. no child to wait

on)
• If the child process has already exited, this returns immediately - otherwise, it blocks

51

Recap
• Multiprocessing overview
• Introducing fork()
• Cloning Processes
• waitpid() and waiting for child

processes

Next time: more about waitpid, plus
how to run other programs

Lecture 8 takeaway: fork()
allows a process to fork off a
cloned child process. The
order of execution between
parent and child is up to the
OS! We can distinguish
between parent and child using
fork’s return value (child PID in
parent, 0 in child).

