CS 111 assignb5:
Thread Dispatcher / Locks / CVs

Overall Task

The threads you’ve been using so far are implemented by Linux (“system
threads”)

This project: use one system thread to implement any number of
simulated threads

Also implement your own mutex and condition variable types

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 2

Assignment Overview

Part 1: Thread

Part 2: Mutex

Part 3: Condition

General Task: Interrupt Enabling/Disabling

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 3

Thread

Implement Thread class, with aspects similar to std: : thread, others
different.

Thread myThread(funcToRun); // Constructor: create and mark ready

funcToRun.schedule();// or call on thread to explicitly mark ready

CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 4

Thread Class

Thread(std: : function<void()> main)
= Constructor: initializes thread to run main as the top-level function in the thread

void schedule()
= Add the associated thread to the back of the ready queue

void Thread: :redispatch()
= Run a different thread; current thread will block if it hasn’t been scheduled.

void Thread::exit()
= Terminate current thread

void Thread::yield()
= Invoke schedule() followed by redispatch(); allows other threads to run

Thread* Thread::current()

See thread. hh for full documentation

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 5

Managing Stacks

Stack class created for you to use:
Stack(void(*start) (Thread *), Thread *t);
void stack_switch(Stack *current, Stack *next);

Stack object holds:

= Space for call stack
* Place to save stack pointer when stack isn’t active

Constructor takes a function as argument
= This function will be invoked the first time the stack is activated via stack_switch
= Passed the specified thread as a parameter when it is called

stack_switch does a context switch
= Save registers on current stack
= Save spin current
= Load sp from next
= Restore registers from new stack
= Return in new context

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 6

Static Methods

Implement Thread class, with aspects similar to std: : thread, others
different.

Some Thread methods are static; this means they aren’t called on a specific
thread, and don’t pertain to a specific thread. Prefix with Thread:: like this:

Thread::yield(); // mark current running thread ready and switch

Thread: :current(); // get pointer to current running thread

Thread: :redispatch(); // context switch

CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 7

Static vs. Non-Static Methods

e Non-static (instance) methods are like those on crash recovery and
synchronization assignments: called on specific object, and you can refer

to instance variables of that object.

o Static methods are not called on a specific object; they’re called
separately

CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 8

Class Static Methods

class Foo {
public:
methodl(int x);
static method2(char *s);

} Normal method:
Foo f1; * Invoked on object instance

/ « Can access instance variables
fl.methodl1l(14);

Foo: :method2 (“xyzzy”); -~ Static methoc_l: | | |
* Not associated with a particular instance
« No this variable accessible in method
e (Can access static variables

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 9

Static Variables

e Non-static (instance) variables are like those on crash recovery and
synchronization assignments: you have one copy for each object.

e Static variables are not associated with a specific object; there is one of
them shared by all objects of that class.

CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 10

Class Static Variables

class Foo {

int Xx;
int y; z: 87
static int z;
} Foo F
X: 24 S : .
y: 13 x: 18 Static variable:
y: 7 one variable, shared
/ across all instances

Instance variables: —____ —F99
one in each instance X: 59
of object y:

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 11

Example: static.cc

class Demo { int main(int argc, char **argv)

public: {
Demo(); std::cout << "Initial number of 1live objects: “
~Demo(); << Demo::num_live() << std::endl;
static int num_Tive();

private: Demo *dl = new Demo();

static int Tive_objects; Demo *d2 nhew Demo();
}; Demo *d3 = new Demo();
int Demo::1live_objects = 0; std::cout << "New number of Tive objects: *“

<< Demo::num_live() << std::endl;
Demo: :Demo() {

Tive_objects++; delete d2;
} delete d3;
Demo: :~Demo() { std::cout << "Live objects after deleting 2: “
Tive_objects--; << Demo::num_live() << std::endl;
}
delete di;
int Demo::num_Tlive() { }
return Tive_objects;
} cp -r /usr/class/cslll/lecture-code/assign5

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 12

Static Variables

Tip: before you make something static, make sure to double check that making it
static is necessary. E.g. for static variables, make sure you want one of them in
total and not one per object.

Making something static when we don’t want it to be (or vice versa) can be the
source of many a gnarly bug!

CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 13

Preemption

void timer_init(uint64_t usec, std::function<void()> handler);
void intr_enable(bool on);
class IntrGuard;

e Preemption requires interrupts

e timer_init causes timer handler to be called periodically

e For safety, need to disable interrupts when touching data shared by
multiple threads

e IntrGuard makes it easy to disable interrupts
= Creating an IntrGuard object saves current state, disables interrupts
= Destroying the IntrGuard restores interrupts to original state
= Similar to std: :unique_Tlock

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 14

Timer lecture example: interrupt.cc

void timer_interrupt_handler() {
cout << "Timer 1interrupt occurred” << endl;
}

int main(int argc, char *argv[]) {
timer_init (500000, timer_interrupt_handler);
while (true) {}

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 15

Thread — Other Notes

e The test harness heap allocates every Thread it creates, which is why we
must delete a Thread’s memory when it exits.

e Use the milestones to implement incrementally!

CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 16

Assignment Overview

Part 1: Thread

Part 2: Mutex

Part 3: Condition

General Task: Interrupt Enabling/Disabling

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 17

MuteXx

class Mutex {
public:
void lock();
void unlock();
bool mine();

}s;

e Similarto std: :mutex except:

= Additional method mine:
indicates whether caller owns Mutex

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 18

Uniprocessor Locks from Lecture

class Lock { void Lock::unlock() {
Lock() {} IntrGuard guard;
int locked = O; if (g.empty()) {
ThreadQueue q; locked = 0;
}s } else {
unblockThread(q.remove());
void Lock::lock() { 1
IntrGuard guard; }
if (llocked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();
}

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 19

Blocking Threads

When new thread created, which
state is it in?

How do we know if thread is ready? Ready

How can we tell if thread is

running? / \

How does running thread block
itself? Call Thread: :yield()?

Once thread blocks, how to find it
to wake it up?

What if thread->schedule() is
never called for blocked thread?

— | Blocked

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 20

MuteXx

e When translating pseudocode, consider how the public Thread methods
can help complete the implementation!

e You can view the test code in test.cc to see more about an individual
test

CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 21

Sample Test: mutex_basic

void

mutex_basic_test()

{
new Thread(basic_threadl);
new Thread(basic_thread2);
intr_enable(false);
Thread: :redispatch();

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 22

Sample Test: mutex_basic

Mutex m;

void basic_threadl()

{
m.lock();

std::cout << "thread
Thread::yield();
std::cout << "thread
Thread::yield();
std::cout << "thread
m.unlock();
m.lock();

std::cout << "thread

}

void basic_thread2()
{

std::cout << "thread
m.lock();

std::cout << "thread
m.unlock();

yielding while holding lock" << std::endl;
yielding again while holding Tock" << std::endl;

releasing lock then trying to reacquire" << std::endl;

reacquired lock" << std::endl;

attempting to lock" << std::endl;

acquired lock; now unlocking" << std::endl;

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 23

Assignment Overview

Part 1: Thread

Part 2: Mutex

Part 3: Condition

General Task: Interrupt Enabling/Disabling

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 24

Condition

class Condition {
public:
void wait(Mutex &m);
void notify_one();
bool notify_all(Q);
s

e Similarto std: :condition_variable_any except:

= Argument to wait is Mutex, not std: :unique_lock or
std: :mutex

e Implementation similar to Mutex from previous part

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 25

Assignment Overview

Part 1: Thread

Part 2: Mutex

Part 3: Condition

General Task: Interrupt Enabling/Disabling

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 26

Enabling/Disabling Interrupts
On all 3 parts, we must properly enable/disable interrupts to avoid race
conditions. Prefer using IntrGuard, use intr_enable only if needed. Tips:

e Interrupts can cause problems when you are modifying state that is
shared between threads. Consider which pieces of state are shared and
which are private to a thread.

e Interrupts must be disabled whenever redispatch is invoked

e When a thread starts up for the first time in your wrapper function, it
receives control from the dispatcher just as if it had invoked redispatch,
so interrupts will be disabled; your code will need to reenable interrupts.

e Sanity check doesn’t check for interrupt enabling/disabling; requires
manual reasoning through about possible race conditions.

e Only disable interrupts where necessary

CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 27

Final Notes

e Use only public methods of Thread class
e The Condition class should use only public methods of Mutex

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 33

