
CS 111 assign5:

Thread Dispatcher / Locks / CVs



CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 2

Overall Task
● The threads you’ve been using so far are implemented by Linux (“system 

threads”)
● This project: use one system thread to implement any number of 

simulated threads
● Also implement your own mutex and condition variable types



Slide 3

Assignment Overview
● Part 1: Thread
● Part 2: Mutex
● Part 3: Condition
● General Task: Interrupt Enabling/Disabling

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 4

Thread
Implement Thread class, with aspects similar to std::thread, others 
different.

Thread myThread(funcToRun);  // Constructor: create and mark ready

funcToRun.schedule();// or call on thread to explicitly mark ready



Slide 5

Thread Class
Thread(std::function<void()> main)

§ Constructor: initializes thread to run main as the top-level function in the thread

void schedule()
§ Add the associated thread to the back of the ready queue

void Thread::redispatch()
§ Run a different thread; current thread will block if it hasn’t been scheduled.

void Thread::exit()
§ Terminate current thread

void Thread::yield()
§ Invoke schedule() followed by redispatch(); allows other threads to run

Thread* Thread::current()

See thread.hh for full documentation

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



Slide 6

Managing Stacks
● Stack class created for you to use:

Stack(void(*start)(Thread *), Thread *t);

void stack_switch(Stack *current, Stack *next);

● Stack object holds:
§ Space for call stack
§ Place to save stack pointer when stack isn’t active

● Constructor takes a function as argument
§ This function will be invoked the first time the stack is activated via stack_switch
§ Passed the specified thread as a parameter when it is called

● stack_switch does a context switch
§ Save registers on current stack
§ Save sp in current
§ Load sp from next
§ Restore registers from new stack
§ Return in new context

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 7

Static Methods
Implement Thread class, with aspects similar to std::thread, others 
different.
Some Thread methods are static; this means they aren’t called on a specific 
thread, and don’t pertain to a specific thread.  Prefix with Thread:: like this:

Thread::yield();   // mark current running thread ready and switch

Thread::current(); // get pointer to current running thread

Thread::redispatch(); // context switch



CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 8

Static vs. Non-Static Methods
● Non-static (instance) methods are like those on crash recovery and 

synchronization assignments: called on specific object, and you can refer 
to instance variables of that object.

● Static methods are not called on a specific object; they’re called 
separately



Slide 9

Class Static Methods
class Foo {
public:
    method1(int x);
    static method2(char *s);
}

Foo f1;

f1.method1(14);

Foo::method2(“xyzzy”);

Normal method:
• Invoked on object instance
• Can access instance variables

Static method:
• Not associated with a particular instance
• No this variable accessible in method
• Can access static variables

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 10

Static Variables
● Non-static (instance) variables are like those on crash recovery and 

synchronization assignments: you have one copy for each object.
● Static variables are not associated with a specific object; there is one of 

them shared by all objects of that class.



Slide 11

Class Static Variables
class Foo {
    int x;
    int y;
    static int z;
}

x: 24
y: 13

Foo

x: 18
y: 7

Foo

x: 199
y: 62

FooInstance variables:
one in each instance
of object

z: 87

Static variable:
one variable, shared
across all instances

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



Example: static.cc
class Demo {
public:
    Demo();
    ~Demo();
    static int num_live();
private:
    static int live_objects;
};

int Demo::live_objects = 0;

Demo::Demo() {
    live_objects++;
}

Demo::~Demo() {
    live_objects--;
}

int Demo::num_live() {
    return live_objects;
}

int main(int argc, char **argv)
{
    std::cout << "Initial number of live objects: “
            << Demo::num_live() << std::endl;
    
    Demo *d1 = new Demo();
    Demo *d2 = new Demo();
    Demo *d3 = new Demo();
    
    std::cout << "New number of live objects: “
            << Demo::num_live() << std::endl;
    
    delete d2;
    delete d3;
    
    std::cout << "Live objects after deleting 2: “
            << Demo::num_live() << std::endl;
    
    delete d1;
}

Slide 12CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)

cp –r /usr/class/cs111/lecture-code/assign5 .



CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 13

Static Variables
Tip: before you make something static, make sure to double check that making it 
static is necessary.   E.g. for static variables, make sure you want one of them in 
total and not one per object.

Making something static when we don’t want it to be (or vice versa) can be the 
source of many a gnarly bug!



Slide 14

Preemption
void timer_init(uint64_t usec, std::function<void()> handler);
void intr_enable(bool on);
class IntrGuard;

● Preemption requires interrupts
● timer_init causes timer handler to be called periodically
● For safety, need to disable interrupts when touching data shared by 

multiple threads
● IntrGuard makes it easy to disable interrupts

§ Creating an IntrGuard object saves current state, disables interrupts
§ Destroying the IntrGuard restores interrupts to original state
§ Similar to std::unique_lock

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



Timer lecture example: interrupt.cc
void timer_interrupt_handler() {
    cout << "Timer interrupt occurred“ << endl;
}

int main(int argc, char *argv[]) {    
    timer_init(500000, timer_interrupt_handler);
    while (true) {}
}

Slide 15CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 16

Thread – Other Notes
● The test harness heap allocates every Thread it creates, which is why we 

must delete a Thread’s memory when it exits.
● Use the milestones to implement incrementally!



Slide 17

Assignment Overview
● Part 1: Thread
● Part 2: Mutex
● Part 3: Condition
● General Task: Interrupt Enabling/Disabling

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



Mutex
class Mutex {
public:
    void lock();
    void unlock();
    bool mine();
};

● Similar to std::mutex except:
§ Additional method mine:

indicates whether caller owns Mutex

Slide 18CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



Uniprocessor Locks from Lecture
class Lock {
    Lock() {}
    int locked = 0;
    ThreadQueue q;
};

void Lock::lock() {
    IntrGuard guard;
    if (!locked) {
        locked = 1;
    } else {
        q.add(currentThread);
        blockThread();
    }
}

void Lock::unlock() {
    IntrGuard guard;
    if (q.empty()) {
        locked = 0;
    } else {
        unblockThread(q.remove());
    }
}

Slide 19CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



Slide 20

Blocking Threads
● When new thread created, which 

state is it in?
● How do we know if thread is ready?
● How can we tell if thread is 

running?
● How does running thread block 

itself? Call Thread::yield()?
● Once thread blocks, how to find it 

to wake it up?
● What if thread->schedule() is 

never called for blocked thread?

Ready

Running Blocked

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 21

Mutex
● When translating pseudocode, consider how the public Thread methods 

can help complete the implementation!
● You can view the test code in test.cc to see more about an individual 

test



Slide 22

Sample Test: mutex_basic
void
mutex_basic_test()
{
    new Thread(basic_thread1);
    new Thread(basic_thread2);
    intr_enable(false);
    Thread::redispatch();
}

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



Slide 23

Sample Test: mutex_basic
Mutex m;

void basic_thread1()
{
    m.lock();
    std::cout << "thread 1 yielding while holding lock" << std::endl;
    Thread::yield();
    std::cout << "thread 1 yielding again while holding lock" << std::endl;
    Thread::yield();
    std::cout << "thread 1 releasing lock then trying to reacquire" << std::endl;
    m.unlock();
    m.lock();
    std::cout << "thread 1 reacquired lock" << std::endl;
}

void basic_thread2()
{
    std::cout << "thread 2 attempting to lock" << std::endl;
    m.lock();
    std::cout << "thread 2 acquired lock; now unlocking" << std::endl;
    m.unlock();
}

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



Slide 24

Assignment Overview
● Part 1: Thread
● Part 2: Mutex
● Part 3: Condition
● General Task: Interrupt Enabling/Disabling

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



Condition
class Condition {
public:
    void wait(Mutex &m);
    void notify_one();
    bool notify_all();
};

● Similar to std::condition_variable_any except:
§ Argument to wait is Mutex, not std::unique_lock or 
std::mutex

● Implementation similar to Mutex from previous part

Slide 25CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



Slide 26

Assignment Overview
● Part 1: Thread
● Part 2: Mutex
● Part 3: Condition
● General Task: Interrupt Enabling/Disabling

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)



CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 27

Enabling/Disabling Interrupts
On all 3 parts, we must properly enable/disable interrupts to avoid race 
conditions.  Prefer using IntrGuard, use intr_enable only if needed.  Tips:
● Interrupts can cause problems when you are modifying state that is 

shared between threads. Consider which pieces of state are shared and 
which are private to a thread.

● Interrupts must be disabled whenever redispatch is invoked
● When a thread starts up for the first time in your wrapper function, it 

receives control from the dispatcher just as if it had invoked redispatch, 
so interrupts will be disabled; your code will need to reenable interrupts.

● Sanity check doesn’t check for interrupt enabling/disabling; requires 
manual reasoning through about possible race conditions.

● Only disable interrupts where necessary



Slide 33

Final Notes
● Use only public methods of Thread class
● The Condition class should use only public methods of Mutex

CS 111 Assignment 5 (Thread Dispatcher/Locks/CVs)


