
CS 111 Assignment 6:

Virtual Memory

Slide 2

Overview
Part 1: implement paging (no demand paging -
assuming sufficient physical pages)
● Write code in VirtualMemoryRegion to

manage a virtual address space and a page
map, map virtual pages to physical pages.

Part 2: add demand paging with the clock
algorithm (physical memory might fill up, and
pages must be swapped to disk)

● Add code to VirtualMemoryRegion to run
the clock algorithm if we need a new
physical page and there are no more pages.

Virtual
Memory
Region

Physical
Memory

Slide 3

Classes

VirtualMemoryRegion:
• Allocates virtual memory
• Catch page faults
• Map/unmap pages
• Maintain a page map

PhysMem:
• Manages pool of physical pages

Virtual
Memory Physical

Memory

Disk

DiskRegion:
• Stores pages to disk (e.g.

swap)
• Loads pages from disk

(e.g. swap, code)

Slide 4

Assignment Structure
Slightly modified mechanism for implementing virtual memory (due to not
writing OS code):
● VirtualMemoryRegion models a virtual address space of a specified size
● Processes don’t request pages – we assume entire region is ok to access, but

not actually mapped until used

● We aren’t intercepting every memory access – instead, we only intercept new
memory accesses – these trigger a page fault and cause handle_fault to run.
● ”new access” = accessing previously unaccessed page, or writing to a read-only

page

● Accessing again in the same way doesn’t run your code – you just handle new
accesses.

Slide 5

Test Harness
test_harness.cc is the provided testing program – it can run script .txt files in a
special format to test your code. The script specifies what code of yours to run
and how. Each sanity check test is a script file.

./test_harness somescript.txt

Example: samples/scripts/one_page_read.txt:
Make a VirtualMemoryRegion with 1 page, and read it
1
INIT 1 1
READ 1 0

See spec for more details on script file format.

Slide 6

Helpful Assignment Types/Functions
VPage – type that represents start of a virtual page (really just a pointer)
PPage – type that represents start of a physical page (really just a pointer)

get_page_size() – returns page size in bytes (guaranteed to be power of 2)

Slide 7

Part 1: Paging
Milestone 1: Read-only pages -> get free ppage, map it to accessed vpage.
Milestone 2: Reading from disk -> does the mapped page have initial
contents on disk?
Milestone 3: Read/Write pages -> Process might write to a page
Milestone 4: Destructor -> Remove mappings, free physical pages

Slide 8

VirtualMemoryRegion
void handle_fault(char *fault_addr);

Private - called when a page fault occurs – passed virtual address that was accessed

static void set_physical_memory_size(size_t nppages);
Public – called by client to specify how many physical pages there are

~VirtualMemoryRegion()
Destructor – called when a region goes away (must unmap / free pages)

Implemented for you to use:

void map(VPage va, PPage pa, Prot prot);
Private – you must call when you want to add/update a mapping

void unmap(VPage va);
Private – you must call when you want to remove a mapping

Slide 9

Protections
How do we know whether a page should be read-only or read/write?
● Set all new mappings to be read-only (PROT_READ)

● If process writes to that page, it will trigger another page fault; use that as an
indicator that the page should be read-write, and update its protections to read-
write (PROT_READ | PROT_WRITE)

Slide 10

State of a VPage

PROT_READ

PROT_READ | PROT_WRITEunmapped

Initial

access

destructor

destructor write

Slide 11

Milestone 1+: Creating/Using PhysMem
PhysMem(size_t npages)

 Initialize a PhysMem with the given number of physical pages
PPage page_alloc()

 Call to get physical page

void page_free(PPage p)

 Call to free physical page
size_t npages()

 Returns number of physical pages in total

size_t nfree()

 Returns number of free physical pages
PPage pool_base()

 Returns the address of the lowest (first) physical page – all physical pages are
contiguous

Note: PhysMem must be created lazily
– in other words, don’t initialize the
PhysMem object itself until
set_physical_memory_size is called.

Slide 12

Milestone 2+: DiskRegion
VirtualMemoryRegion already has a DiskRegion instance variable.

bool is_page_stored_on_disk(const VPage vpage);

 Returns whether there is data for this virtual page stored on disk

void load_page_from_disk(const VPage vpage, PPage dst);

 Reads data from disk for this virtual page into specified physical page

Slide 13

Page Map
You will need to maintain a page map instance variable starting in milestone
3.
● Tracks information about mappings across calls to handle_fault
● Model as a map data structure (unordered_map) that contains only present

pages

● You will update the design of your page map over time as you implement more
functionality; only add what you need at each milestone.

Slide 14

Part 2: Demand Paging
Milestone 1: clock_sweep
Milestone 2: clock_should_remove
Milestone 3: clock_remove
Milestone 4: Dirty Pages
Milestone 5: Clock Algorithm

Slide 15

The Clock Algorithm
If need PPage but all in use:
● Check if hand is pointing to removal

candidate
● Not candidate?

Indicate swept over
Advance hand, try next page

● Candidate? Kick out:
Indicate kicked out
Advance hand, stop

● Then get new PPage from poolPhysical Page
Frames (PPages)

Clock
Hand

Slide 16

VirtualMemoryRegion Part 2
void clock_sweep(VPage vp)

For clock algorithm, called when clock hand sweeps over page and marks unreferenced

bool clock_should_remove(VPage vp)

 For clock algorithm, should return whether page is unreferenced

void clock_remove(VPage vp)

 For clock algorithm, should mark page as kicked to disk

Strongly encouraged to add error checking to each to check whether passed-in page is in
your page map (to alert you about any erroneous calls)!

Slide 17

Referenced Bit
From lecture: when clock algorithm sweeps over a page, if referenced = 1,
set it to 0 and continue. If referenced = 0, pick it to swap to disk.

For this assignment, instead of referenced bit, we will use page protections.

PROT_READ or PROT_READ | PROT_WRITE means referenced = 1

PROT_NONE (new – means no read, no write) means referenced = 0

E.g. in clock_sweep, you must update the corresponding virtual page to have
protection PROT_NONE.

If the virtual page is accessed again, we get a page fault and we should upgrade
to PROT_READ.

Slide 18

State of a VPage

PROT_NONE

PROT_READ

PROT_READ | PROT_WRITEunmapped

Initial

access

clock sweep

destructor
clock sweep

destructor/clock remove

destructor

access

write

Slide 19

Dirty Pages
If a page is kicked out of memory, we need to swap it to disk only if it’s dirty
(has been modified since being mapped).

We will assume any page that the process attempts to write to is dirty.

NOTE: a PROT_NONE page could be dirty! E.g. page written to, then clock hand
sweeps over.

How do we track dirty state?

Slide 20

DiskRegion Part 2
void store_page_to_disk(const VPage vpage, const PPage src);

 Stores physical page contents to disk, labeled as for the given virtual page.

Slide 21

State of a VPage

- How do you keep track of whether a page is dirty?
- In which states can the page be dirty?
- Which arrows check/update the dirty state?

PROT_NONE

PROT_READ

PROT_READ | PROT_WRITEunmapped

Initial

access

clock sweep

destructor
clock sweep

destructor/clock remove

destructor

access

write

Slide 22

Clock Algorithm
Update your code wherever you call PhysMem::page_alloc() to check if
there are more physical pages, and if not, run the clock algorithm to kick
one out.

You should maintain a fixed-size vector with info about each physical page
– needed to loop over pages in clock algorithm.

- The index of the vector represents physical page numbers
- e.g. index 2 means physical page #2
- how do you get from PPage to physical page number?

- What information do you need for each physical page?
- “Specifically, we need to know, for each physical page,

which VirtualMemoryRegion is currently using it, and which virtual page they
have it mapped to. This is because we will need to call the clock_ methods to
tell them e.g. that one of their pages is being kicked out.”

Slide 23

Clock Algorithm
Update your code wherever you call PhysMem::page_alloc() to check if
there are more physical pages, and if not, run the clock algorithm to kick
one out.

You can access “pool” of unallocated pages via PhysMem:

std::size_t nfree()

 Returns number of pages in unallocated pool
PPage page_alloc()

 Call to get a fresh physical page if available
void page_free(PPage p)

 Returns page to unallocated pool.

Slide 24

Final Tips
● Make sure to keep your page map updated
● Make sure to call map() whenever you change protections
● See spec for how to run in GDB
● write your own custom script files for testing (at least 2 required)

● There isn’t much code, but what you do write takes some thinking to
connect all the pieces together. Make sure to work incrementally!

