CS111 Final Exam Reference Sheet

Filesystem Access

// specify one of O _RDONLY, O WRONLY, O_RDWR in flags

// O_TRUNC clears existing file, O_CREAT creates if doesn’t exist,

// O_EXCL fails if already exists

int open(const char *pathname, int flags); // returns descriptor

int open(const char *pathname, int flags, mode_t mode); // also sets permissions

int close(int fd); // ignore retval

int dup2(int oldfd, int newfd); // ignore retval

int pipe(int fds[]); // ignore retval

int pipe2(int fds[], int flags); // ignore retval, flags typically O CLOEXEC
ssize t read(int fd, void *buf, size t count); // returns bytes read into buf
ssize t write(int fd, const void *buf, size t count); // returns bytes written

#define STDIN_FILENO ©
#define STDOUT_FILENO 1
#define STDERR_FILENO 2

Multiprocessing

pid_t fork();

pid _t waitpid(pid_t pid, int *status, int flags);

int execvp(const char *path, char *argv[]); // ignore retval
#define WIFEXITED(status) // macro

#define WEXITSTATUS(status) // macro

#define WIFSIGNALED(status) // macro

#define WTERMSIG(status) // macro

#define SIGSEGV 11

Multithreading

class thread {

public:
thread(...); // first argument is function, its args come afterwards
void join();

}s
Use ref() in the thread constructor to pass args by reference

// create unique lock
unique_lock<mutex> myUL(mutexName);



class mutex {
public:
mutex();
void lock();
void unlock();

}s

class condition_variable _any {
public:
void wait(mutex& m);
void notify all();

}s

C++ Standard Library

template <typename T>

class vector {

public:
size t size() const;
void push_back(const T& elem);
T& operator[](size t i);

}s

// range-based for loop
for (const T& value : vec) {
.. // use value to refer to each element

}

template <typename T>
class queue {
public:
size t size() const;
bool empty() const;
void push(const T& elem);
T& front();
void pop();
}s

// map operations below are for both map and unordered_map
template <typename Key, typename Value>
class unordered _map {
public:
size t size() const;
Value& operator[](const Key& key); // auto-inserts!
size t erase(const Key& key); // ignore retval
iterator find(const Key& key); // == m.end() if not found, != otherwise

}s



// iterating through a map

for (auto it = myMap.begin(); it != myMap.end(); ++it) {
// it->first is key, it->second is value

}

// range-based for loop
for (const auto& [key, value] : myMap) {
.. // use key and value to refer to each pair’s key/value

}

// check if key is in map

if (myMap.find(key) != myMap.end()) {
// key is in map

}



