CS111 Final Review
Session

Winter 2023
Yash Govil, Michela Marchini

Key Topics

Filesystems and Crash Recovery
Multiprocessing and Pipes
Trust/ethics in systems
Multithreading and Synchronization
Dispatching and Scheduling

Virtual Memory and Paging

Multithreading and
Synchronization

The Monitor Pattern: "ThreadPipe

“ThreadPipe

e Let's implement a class called "ThreadPipe’
e Like a pipe, but between threads instead of processes
e Main functionality:
o void put (char c);’
m Puts character in the pipe (or blocks if it's full, just like "write™ to a pipe)
o char get();
m Gets a character from the pipe (or blocks if it's empty, just like ‘read” from a pipe)

"ThreadPipe : Baseline Implementation

void ThreadPipe::put(char c) {

count++;
buffer[nextPut] = c;
_ nextPut++;
class ThreadPipe { : _
ThreadPipe() {} T (:Zﬁm ;‘O,S'ZE) {
void put(char c); } ’
char get(); }
char buffer[SIZE]; .
int count = 0 chicr)l':tre.adPlpe..get(){
int nextPut = 0; char ¢ = buffer[nextGet];
int nextGet = 0; nextGet++:
) if (nextGet == SIZE) {
nextGet = 0;
Y
return c;

"ThreadPipe : Baseline Implementation

void ThreadPipe::put(char c) {

count++;
buffer[nextPut] = c;
_ nextPut++;
class ThreadPipe { : _

ThreadPipe() {} f (Ezgﬂ: ;‘O,S'ZE) {

void put(char c); } ’

char get(); }

char buffer[SIZE]; .

int count = 0 chicr)l':tre.adPlpe..get(){

int nextPut = 0;

int nextGet = 0: char ¢ = buffer[nextGet];

) nextGet++;
if (nextGet == SIZE) {
nextGet = 0;
Key Question 1: Are there any race conditions)

. : return c;
possible? If so, how can we fix them?

"ThreadPipe': Locked Implementation

void ThreadPipe::put(char c) {
lock.lock(); // new

count++;
buffer[nextPut] = c;
class ThreadPipe { nextPut++;
ThreadPipe() {} if (nextPut == SIZE) {
void put(char c); } nextPut = 0;
char get(); lock.unlock(); // new
}
std::mutex lock; // new
char buffer[SIZE]; char ThreadPipe::get() {
int count = 0: lock.lock(); // new
: - N- count--;
!n’; nextgui __ %’_ char ¢ = buffer[nextGet];
Int nextoet = U, nextGet++;
} if (nextGet == SIZE) {
nextGet = 0;
}
lock.unlock(); // new
return c;

"ThreadPipe': Locked Implementation

void ThreadPipe::put(char c) {
lock.lock(); // new

count++;
buffer[nextPut] = c;
class ThreadPipe { nextPut++;
ThreadPipe() {} if (nextPut == SIZE) {
void put(char c); } nextPut = 0;
char get(); lock.unlock(); // new
}
std::mutex lock; // new
char buffer[SIZE]; char ThreadPipe::get() {
int count = 0: lock.lock(); // new
i =0 count--;
!nt nextbut - 0’_ char c¢ = buffer[nextGet];
int nextGet = 0; nextGet++:
} if (nextGet == SIZE) {
nextGet = 0;
Key Question 2: What if ‘' ThreadPipe’ is }
full/empty? lock.unlock(); // new
' return c;

void ThreadPipe::put(char c) {
lock.lock();
while (count == SIZE) { // new

"ThreadPipe : Busy Waiting jock unlock():

lock.lock();
}

count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {
class ThreadPipe { } nextPut = 0;
ThreadPipe() {} lock.unlock();
void put(char c); }

char get();
get() char ThreadPipe::get() {

lock.lock();
std::mutex lock; // new while (count == 0) { // new
char buffer[SIZE]; lock.unlock();
int count = 0; lock.lock();
int nextPut = 0; } _
. count--;
int nextGet = 0; char ¢ = buffer[nextGet];

} nextGet++;
if (nextGet == SIZE) {
nextGet = 0;

}

lock.unlock();

return c;

"ThreadPipe : Busy Waiting

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock; // new
char buffer[SIZE];

int count = 0;

int nextPut = 0;

int nextGet = 0;

}

Key Question 3: How can we avoid busy
waiting?

void ThreadPipe::put(char c) {

}

lock.lock();

while (count == SIZE) { // new
lock.unlock();
lock.lock();

}

count++;

buffer[nextPut] = c;

nextPut++;

if (nextPut == SIZE) {
nextPut = 0;

}

lock.unlock();

char ThreadPipe::get() {

lock.lock();

while (count == 0) { // new
lock.unlock();
lock.lock();

}

count--;

char ¢ = buffer[nextGet];

nextGet++;

if (nextGet == SIZE) {
nextGet = 0;

}

lock.unlock();

return c;

Condition Variables

1. ldentify a single kind of event that we need to wait/notify for

2. Ensure there is proper state to check if the event has happened

3. Create a condition variable and share it among all threads either waiting for
that event to happen or triggering that event

4. ldentify who will notify that this happens, and have them notify via the
condition variable

5. ldentify who will wait for this to happen, and have them wait via the condition

variable

"ThreadPipe

class ThreadPipe {
ThreadPipe() {}

void put(char c);
char get();

std::mutex lock;

" Condition Variables

std::condition_variable any added; // new
std::condition_variable any removed; // new

char buffer[SIZE];
int count = 0;

int nextPut = 0;
int nextGet = 0;

void ThreadPipe::put(char c) {

}

lock.lock();

while (count == SIZE) {
removed.wait(lock); // new

}

count++;

buffer[nextPut] = c;

nextPut++;

if (nextPut == SIZE) {
nextPut = 0;

added.notify_one(); // new
lock.unlock();

char ThreadPipe::get() {

lock.lock();

while (count == 0) {
added.wait(lock); // new

}

count--;

char ¢ = buffer[nextGet];

nextGet++;

if (nextGet == SIZE) {
nextGet = 0;

}

removed.notify_one(); // new

lock.unlock();

return c;

Dispatching and
Scheduling

110 Practice Final 3: Question 4e

e. [2 points] The process scheduler relies on runnable and blocked queues to categorize
processes. How exactly does this categorization lead to better CPU utilization?

e Don't want to run threads that can't do any useful work right now (blocked)
e Ensures that we only run threads that can do something.

Thread States

e.g. lock
unlocked, disk
i/o completed

e.g. timeslice
popped from ran out

ready queue

e.g. lock already locked, disk read

e.g. lock unlocked, disk i/o
completed, AND core is available
(skip ready queue)

Virtual Memory

Different Approaches: Pros and Cons

Approach 1: Base and Bound

Pros

e Quick address translation
Doesn't require much space

e Separate virtual and physical address -
can move physical memory, update base,
etc.

Stack

Data

Code

Cons

All memory allocated to a process must be
contiguous virtual addresses
o Stack often far from heap in virtual address
space
Can only grow upwards

Approach 2: Multiple Segments

Pros Cons

e Quick address translation e Segments are of different sizes - will trend
Little space needed per process towards external fragmentation

e Can allocate different discontinuous e Segment encoding is limited
regions of virtual memory with different

protections
o Code
o Heap
o Stack

Approach 3: Paging

Pros Cons
e Fixed page size - no external e Internal fragmentation within pages - page
fragmentation size is 4KB, but may not need all memory.
e Dynamically resize memory allocated to a e Slower/Complicated address translation
process o Clock algorithm

o Thrashing - time spent in OS

e Grows in any direction
reading/writing pages to/from disk

Can assign different permissions to
different pages
o Code

o Heap
o Stack

