
CS111 Final Review 
Session

Winter 2023
Yash Govil, Michela Marchini



Key Topics

● Filesystems and Crash Recovery
● Multiprocessing and Pipes
● Trust/ethics in systems
● Multithreading and Synchronization
● Dispatching and Scheduling
● Virtual Memory and Paging



Multithreading and 
Synchronization
The Monitor Pattern: `ThreadPipe`



`ThreadPipe`

● Let's implement a class called `ThreadPipe`
● Like a pipe, but between threads instead of processes
● Main functionality:

○ `void put (char c);`
■ Puts character in the pipe (or blocks if it's full, just like `write` to a pipe)

○ `char get();`
■ Gets a character from the pipe (or blocks if it's empty, just like `read` from a pipe)



void ThreadPipe::put(char c) {
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

}

char ThreadPipe::get() {
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
return c;

}

`ThreadPipe`: Baseline Implementation

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

}



`ThreadPipe`: Baseline Implementation

Key Question 1: Are there any race conditions 
possible? If so, how can we fix them?

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

}

void ThreadPipe::put(char c) {
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

}

char ThreadPipe::get() {
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
return c;

}



`ThreadPipe`: Locked Implementation

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock; // new
char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

}

void ThreadPipe::put(char c) {
lock.lock(); // new
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}
lock.unlock(); // new

}

char ThreadPipe::get() {
lock.lock(); // new
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
lock.unlock(); // new
return c;

}



`ThreadPipe`: Locked Implementation

Key Question 2: What if `ThreadPipe` is 
full/empty?

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock; // new
char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

}

void ThreadPipe::put(char c) {
lock.lock(); // new
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}
lock.unlock(); // new

}

char ThreadPipe::get() {
lock.lock(); // new
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
lock.unlock(); // new
return c;

}



`ThreadPipe`: Busy Waiting

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock; // new
char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

}

void ThreadPipe::put(char c) {
lock.lock();
while (count == SIZE) { // new

lock.unlock();
lock.lock();

}
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}
lock.unlock();

}

char ThreadPipe::get() {
lock.lock();
while (count == 0) { // new

lock.unlock();
lock.lock();

}
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
lock.unlock();
return c;

}



`ThreadPipe`: Busy Waiting

Key Question 3: How can we avoid busy 
waiting?

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock; // new
char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

}

void ThreadPipe::put(char c) {
lock.lock();
while (count == SIZE) { // new

lock.unlock();
lock.lock();

}
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}
lock.unlock();

}

char ThreadPipe::get() {
lock.lock();
while (count == 0) { // new

lock.unlock();
lock.lock();

}
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
lock.unlock();
return c;

}



Condition Variables

1. Identify a single kind of event that we need to wait/notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for 

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the 

condition variable
5. Identify who will wait for this to happen, and have them wait via the condition 

variable



`ThreadPipe`: Condition Variables

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock;
std::condition_variable_any added; // new
std::condition_variable_any removed; // new
char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

}

void ThreadPipe::put(char c) {
lock.lock();
while (count == SIZE) {

removed.wait(lock); // new
}
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}
added.notify_one(); // new
lock.unlock();

}

char ThreadPipe::get() {
lock.lock();
while (count == 0) {

added.wait(lock); // new
}
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
removed.notify_one(); // new
lock.unlock();
return c;

}



Dispatching and 
Scheduling



110 Practice Final 3: Question 4e

● Don't want to run threads that can't do any useful work right now (blocked)
● Ensures that we only run threads that can do something.



Thread States

Ready

Blocked Running

e.g. lock 
unlocked, disk 
i/o completed

e.g. lock already locked, disk read

e.g. lock unlocked, disk i/o 
completed, AND core is available 
(skip ready queue)

popped from 
ready queue

e.g. timeslice
ran out



Virtual Memory
Different Approaches: Pros and Cons



Approach 1: Base and Bound

Pros

● Quick address translation
● Doesn't require much space
● Separate virtual and physical address -

can move physical memory, update base, 
etc.

Cons

● All memory allocated to a process must be 
contiguous virtual addresses

○ Stack often far from heap in virtual address 
space

● Can only grow upwards

Code
0

∞

Data

Stack



Approach 2: Multiple Segments

Pros

● Quick address translation
● Little space needed per process
● Can allocate different discontinuous 

regions of virtual memory with different 
protections

○ Code
○ Heap
○ Stack

Cons

● Segments are of different sizes - will trend 
towards external fragmentation

● Segment encoding is limited



Approach 3: Paging

Pros

● Fixed page size - no external 
fragmentation

● Dynamically resize memory allocated to a 
process

● Grows in any direction
● Can assign different permissions to 

different pages
○ Code
○ Heap
○ Stack

Cons

● Internal fragmentation within pages - page 
size is 4KB, but may not need all memory.

● Slower/Complicated address translation
○ Clock algorithm
○ Thrashing - time spent in OS 

reading/writing pages to/from disk


