
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

C++ Classes Review

Additional Resources:
Sean Szumlanski’s awesome CS106B lecture notes

Cynthia Bailey + Julie Zelenski’s awesome CS106B slides

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1242/lectures/14-oop/
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1232/lectures/14-oop/14-Classes.pdf

2

Overview
• What are classes?
• Defining a Class
• Instance Variables
• Constructor
• Methods
• Destructor

cp -r /afs/ir/class/cs111/lecture-code/classes .

3

Overview
• What are classes?
• Defining a Class
• Instance Variables
• Constructor
• Methods
• Destructor

cp -r /afs/ir/class/cs111/lecture-code/classes .

4

What are classes?
A class lets you define your own custom variable type.
• You specify what data is inside it (instance variables), what it can do (public

methods), and how you create one (constructor)
• defined across two files: a header file and an implementation file

• Header file (.h/.hh): contains the interface – an outline of what the type can do, but not
the implementation

• Implementation file (.cc / .cpp): contains all method implementations - internal code

• Benefit: abstract away complexity of type into separate files
• Client (code that uses this variable type) vs. implementer (implementation of

class). Clients create instances of this class.

5

Example: Bank Account
BankAccount ba1;
ba1.deposit(2.00);
ba1.withdraw(1.50);
cout << "Balance for first account is "

<< ba1.getBalance() << endl;

BankAccount ba2;
ba2.deposit(60.00);
ba2.withdraw(5.00);
ba2.withdraw(5.00);
cout << "Balance for second account is "

<< ba2.getBalance() << endl;

Based on an example courtesy of Cynthia Bailey + Julie Zelenski’s awesome CS106B slides

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1232/lectures/14-oop/14-Classes.pdf

6

Example: Bank Account
We would like the following client functionality for the BankAccount type:
• When a bank account is created, it should start with a balance of 0.
• void deposit(amount): this should deposit the specified amount. It does

nothing if the amount is negative.
• void withdraw(amount): this should withdraw the specified amount. It does

nothing if the amount exceeds the balance.
• double getBalance(): this should return the balance in the account.

Overall: a bank account encapsulates logic about its balance

7

Overview
• What are classes?
• Defining a Class
• Instance Variables
• Constructor
• Methods
• Destructor

cp -r /afs/ir/class/cs111/lecture-code/classes .

8

Defining a Class – Header File
// bankaccount.hh
#pragma once

class BankAccount {
public:

// client-accessible functionality/data goes here

private:
// private internal-only functionality/data goes here

};

Tells the compiler "if you see this file more than once
while compiling, ignore it after the first time" (so it doesn't
think you're trying to define things more than once).

9

Defining a Class – Header File
// bankaccount.hh
#pragma once

class BankAccount {
public:

// client-accessible functionality/data goes here

private:
// private internal-only functionality/data goes here

};

Rule of thumb: default to private unless there
is a need to make something public. (don’t
want client to be able to do things it shouldn’t)

10

Public vs. Private
int main() {

vector<int> nums;

nums.push_back(10);
nums.push_back(15);
nums.push_back(33);

// THIS WOULD BE SO BAD
nums.size = 1;

...

Example courtesy of Sean Szumlanski’s awesome CS106B lecture notes

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1242/lectures/14-oop/

11

Overview
• What are classes?
• Defining a Class
• Instance Variables
• Constructor
• Methods
• Destructor

cp -r /afs/ir/class/cs111/lecture-code/classes .

12

Instance Variables / Fields / Member
Variables

// bankaccount.hh
#pragma once

class BankAccount {
public:

// client-accessible functionality/data goes here

private:
// private internal-only functionality/data goes here
// instance variables
double balance;

}; Every BankAccount instance will have its own copy of
any instance variables. We declare instance variables in
the header file, but usually initialize them in the CC file in
the constructor.

13

Overview
• What are classes?
• Defining a Class
• Instance Variables
• Constructor
• Methods
• Destructor

cp -r /afs/ir/class/cs111/lecture-code/classes .

14

Constructor
A class’s constructor is called when a new variable of that type is created.

// client code – this calls the constructor
BankAccount ba1;
// equivalent to
BankAccount ba1();

15

Constructor
A class’s constructor is called when a new variable of that type is created.

// client code – this calls the constructor
BankAccount *ba = new BankAccount;
// equivalent to
BankAccount *ba = new BankAccount();

You do not need to define a constructor in your class if you don’t need one (if
you don’t, C++ will just pretend you defined a constructor that is empty).

16

Constructor
// bankaccount.hh
#pragma once

class BankAccount {
public:

// client-accessible functionality/data goes here
// constructor
BankAccount();

private:
// private internal-only functionality/data goes here
double balance;

};

17

Constructor

Note: not every instance variable needs to be explicitly initialized.
For instance, built-in data structures (e.g., vector, map) are
automatically initialized to be empty when they are declared.

A constructor should perform any necessary initialization so the variable can be
used.

// bankaccount.cc
#include "bankaccount.hh"

BankAccount::BankAccount() {
 balance = 0;
}

18

Constructor
A class can have more than one constructor, and constructors can also take in
parameters. For example, let’s say we want to optionally let the client specify
the initial account balance:

// client code
BankAccount ba1; // balance initialized to 0
BankAccount ba2(50); // balance initialized to 50

19

Constructor
// bankaccount.hh
#pragma once

class BankAccount {
public:

// client-accessible functionality/data goes here
// constructor
BankAccount();
BankAccount(double initialAmount);

private:
// private internal-only functionality/data goes here
double balance;

};

20

Constructor
// bankaccount.cc
#include "bankaccount.hh"

BankAccount::BankAccount() {
balance = 0;

}

BankAccount::BankAccount(double initialAmount) {
balance = initialAmount;

}

21

Constructor
// bankaccount.hh
#pragma once

class BankAccount {
public:

// client-accessible
functionality/data goes here

BankAccount(double initialAmount);

private:
// private internal-only

functionality/data goes here
double balance = 0;

};

In this case, could we also initialize the
balance directly in the header file, and
then not need to have one of the
constructors?

22

Constructor
// bankaccount.hh
#pragma once

class BankAccount {
public:

// client-accessible
functionality/data goes here

BankAccount(double initialAmount);

private:
// private internal-only

functionality/data goes here
double balance = 0;

};

In this case, could we also initialize the
balance directly in the header file, and
then not need to have one of the
constructors? Yes.

However, it’s sometimes more common
to initialize in the constructor;
sometimes, we cannot initialize in the
header (e.g., if its initialization depends
on a constructor parameter).

23

Overview
• What are classes?
• Defining a Class
• Instance Variables
• Constructor
• Methods
• Destructor

cp -r /afs/ir/class/cs111/lecture-code/classes .

24

Methods
// bankaccount.hh
#pragma once

class BankAccount {
public:

// client-accessible functionality/data goes here
BankAccount();
BankAccount(double initialAmount);

// public methods
void deposit(double amount);
void withdraw(double amount);
double getBalance();

private:
// private internal-only functionality/data goes here
double balance;

};

25

Methods
// bankaccount.hh
#pragma once

class BankAccount {
public:

// client-accessible functionality/data goes here
BankAccount();
BankAccount(double initialAmount);

// public methods
void deposit(double amount);
void withdraw(double amount);
double getBalance();

private:
// private internal-only functionality/data goes here
void helperFn(); // private methods for internal-only use (e.g. helpers)
...

26

Methods
// bankaccount.cc
#include "bankaccount.hh"

BankAccount::BankAccount() {
balance = 0;

}

BankAccount::BankAccount(double initialAmount) {
balance = initialAmount;

}

void BankAccount::deposit(double amount) {
if (amount > 0) {

balance += amount;
}

}

...

27

Methods
// bankaccount.cc
#include "bankaccount.hh"

BankAccount::BankAccount() {
balance = 0;

}

BankAccount::BankAccount(double initialAmount) {
balance = initialAmount;

}

void BankAccount::deposit(double amount) {
if (amount > 0) {

balance += amount;
}

}

...

BankAccount:: means the
method is within the BankAccount
class, so it can access all
members (e.g. instance
variables).

28

Methods
// bankaccount.cc
#include "bankaccount.hh"
...

void BankAccount::withdraw(double amount) {
if (amount <= balance) {

balance -= amount;
}

}

double BankAccount::getBalance() {
return balance;

}

29

Methods
// bankaccount.cc
#include "bankaccount.hh"

...

void myHelper() {
if (balance > 0) { // error: not a BankAccount method, can’t access balance!

...
}

If you want to make helper functions that need to access
class members (e.g. instance variables), make sure to
define them in the private section of the header and
implement them as ClassName::method. If you
instead just declare a regular helper function, you cannot
access class members!

30

Methods
// bankaccount.hh
#pragma once

class BankAccount {
...
private:

void myHelper();
...
};

// bankaccount.cc
#include "bankaccount.hh"

...

void BankAccount::myHelper() {
if (balance > 0) { // ok!

...

31

this
Methods are “called on” a particular instance and operate on a particular
instance. Here, deposit is “called on” ba1:

BankAccount ba1;
ba1.deposit(2.00);

Within methods, the this keyword is a pointer to the instance the method is
called on:

void BankAccount::deposit(double amount) {
// for above code, "this" would be a pointer to ba1
cout << this << endl; // prints address of current object

32

this
Why is the this keyword useful? Useful in specific cases such as:
• Needing to explicitly specify that we are referring to an instance variable vs. a

local variable:

BankAccount::BankAccount(double balance) {
this->balance = balance;

}
(side note – an easy way to avoid the need for this is to just use separate names
for the parameter and instance variable)
• If you need to get a pointer to the current object to pass as a parameter or

save somewhere.

33

Overview
• What are classes?
• Defining a Class
• Instance Variables
• Constructor
• Methods
• Destructor

cp -r /afs/ir/class/cs111/lecture-code/classes .

34

Destructor
A class’s destructor is called automatically when a variable of that type is
destroyed. It is destroyed if it goes out of scope or is deleted from the heap.
The destructor should do any internal cleanup required before the object goes
away.

// client code
if (...) {

BankAccount ba(50);
...

} // triggers destructor for ba

35

Destructor
A class’s destructor is called automatically when a variable of that type is
destroyed. It is destroyed if it goes out of scope or is deleted from the heap.
The destructor should do any internal cleanup required before the object goes
away.

// client code
BankAccount *ba = new BankAccount();
...
delete ba; // triggers destructor for ba

You do not need to define a destructor in your class if you don’t need one (if you
don’t, C++ will just pretend you defined a destructor that is empty).

36

Destructor
Destructors are commonly used to free any heap-allocated instance variables (if
any). You may also have other necessary logic that needs to run when an object
goes away.

37

Destructor
// bankaccount.hh
#pragma once

class BankAccount {
public:

// client-accessible functionality/data goes here
BankAccount();
BankAccount(double initialAmount);

void deposit(double amount);
void withdraw(double amount);
double getBalance();

// destructor
~BankAccount();

private:
// private internal-only functionality/data goes here
double balance;

};

38

Destructor
// bankaccount.cc
#include "bankaccount.hh"
...

BankAccount::~BankAccount() {
// code here runs before the instance goes away

}

39

Other Notes
• “using namespace std” at the top of cc files, and std:: in front of types in

header files:
• A namespace is like a named grouping and allows us to have multiple things in our

program with the same. Common built-in C++ types like vector, map, string, etc. are in
the “std” namespace.

• By default, we need to include std:: in front of these types to tell C++ where to find
them.

• However, we commonly avoid this in .cc files by putting using namespace std at the top
of the file. (Tells C++: “assume I’m referring to the std namespace if I don’t specify and
you don’t know which namespace something is in”)

• You usually shouldn’t put “using namespace std” at the top of header (.h/.hh) files
because this will cause that namespace to be included in any file that imports it, which
they may not want. For this reason, you'll commonly see std:: in header files where we
need to refer to std types.

40

Other Notes
• Classes vs structs: similar, but structs default to public access for all members.

Classes default to private members, which encourages the idea of abstraction:
only exposing functionality and data that is important for the client to see.
• Anything in the private section is accessible only within that class. You can

define various components there: instance variables, private methods, struct
definitions, etc.

41

Demo

bankaccount.hh, bankaccount.cc, client.cc

cp -r /afs/ir/class/cs111/lecture-code/classes .

42

Recap
• What are classes?
• Defining a Class
• Instance Variables
• Constructor
• Methods
• Destructor

cp -r /afs/ir/class/cs111/lecture-code/classes .

43

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

Pointers and Memory Review

Additional Resources:
Sean Szumlanski’s awesome CS106B lecture notes for C++

(pointers/arrays and heap)
CS107 prior quarter course website for slides for C (strings,

pointers, heap)

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1242/lectures/15-pointers-and-arrays/
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1242/lectures/16-dynamic-memory-management/
https://web.stanford.edu/class/archive/cs/cs107/cs107.1236/

44

Overview
• Pointers overview
• ”Address of” vs. ”pass by reference”
• C arrays vs. pointers
• C Strings
• Heap Allocation

45

Overview
• Pointers overview
• ”Address of” vs. ”pass by reference”
• C arrays vs. pointers
• C Strings
• Heap Allocation

46

Pointers and Memory
A pointer is a variable that stores a memory address.
• Memory is a big array of bytes, and each byte has a

unique numeric index that is commonly written in
hexadecimal. A pointer stores one of these
“indexes”.
• Pointers are also essential for allocating memory on

the heap.

Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

47

Pass By Value
When you pass a value as a parameter, C/C++
passes a copy of that value.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

48

Pass By Value
When you pass a value as a parameter, C/C++
passes a copy of that value.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

49

Pass By Value
When you pass a value as a parameter, C/C++
passes a copy of that value.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

50

Pass By Value
When you pass a value as a parameter, C/C++
passes a copy of that value.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

51

Pass By Value
When you pass a value as a parameter, C/C++
passes a copy of that value.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 3
…

x

val

main()

myFunc()

52

Pass By Value
When you pass a value as a parameter, C/C++
passes a copy of that value.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

53

Pointers
Pointers allow us to pass around the location of data so that the original data
can be modified in other functions.

Example: I want to write a function myFunc that can change the value of an
existing integer to be 3.

int main(int argc, char *argv[]) {
int x = 2;
myFunc(???);
printf("%d", x); // want to print 3
...

}

54

Pointers
int x = 2;

// Make a pointer that stores the address of x.
// (& means "address of")
int *xPtr = &x;

// Dereference the pointer to go to that address.
// (* means "dereference")
printf("%d", *xPtr); // prints 2

If declaration: “pointer”
 ex: int * is "pointer to an int”
If operation: "dereference/the value at address”
 ex: *num is "the value at address num"

*

55

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

56

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 2
…

xmain()

STACK

57

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

58

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

59

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 3
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

60

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 3
…

xmain()

STACK

61

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int *xPtr;
myFunc(xPtr);
...

}

STACK
Address Value

…

0x1f0 ???
…

xPtrmain()

Would this also work?

62

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int *xPtr;
myFunc(xPtr);
...

}

STACK
Address Value

…

0x1f0 ???
…

xPtrmain()

Would this also work? The types match, and this would
compile, but this wouldn’t work. The reason is we are
not making space for an int; we are making space for a
pointer, which is not initialized. myFunc will then try to
go to the memory address stored in the pointer, even
though the pointer is not referring to valid memory!

63

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int *x;
myFunc(x);
printf("%d", *x);
...

}

Address Value
…

0x1f0 ???
…

0x10 ???
…

xPtr

intPtr

main()

myFunc()

STACK

Would this also work? The types match, and this would
compile, but this wouldn’t work. The reason is we are
not making space for an int; we are making space for a
pointer, which is not initialized. myFunc will then try to
go to the memory address stored in the pointer, even
though the pointer is not referring to valid memory!

64

Pointer Arithmetic
Pointer arithmetic does not work in bytes. Instead, it
works in the size of the type it points to.

// nums points to an int array
int *nums = … // e.g. 0xff0
int *nums1 = nums + 1; // e.g. 0xff4
int *nums3 = nums + 3; // e.g. 0xffc

printf("%d", *nums); // 52
printf("%d", *nums1); // 23
printf("%d", *nums3); // 34

Address Value

…

0x1004 1

0x1000 16

0xffc 34

0xff8 12

0xff4 23

0xff0 52

…

65

Pointer Arithmetic
Pointer arithmetic does not work in bytes. Instead, it
works in the size of the type it points to.

// nums points to a short array
short *nums = … // e.g. 0xff0
short *nums1 = nums + 1; // e.g. 0xff2
short *nums3 = nums + 3; // e.g. 0xff6

printf("%h", *nums); // 12
printf("%h", *nums1); // 54
printf("%h", *nums3); // 23

Address Value

…

0xffa -5

0xff8 1

0xff6 23

0xff4 333

0xff2 54

0xff0 12

…

66

Pointer Arithmetic
Pointer arithmetic with two pointers does not give the byte
difference. Instead, it gives the number of places they
differ by.

// nums points to an int array
int *nums = … // e.g. 0xff0
int *nums3 = nums + 3; // e.g. 0xffc
int diff = nums3 - nums; // 3

Address Value

…

0x1004 1

0x1000 16

0xffc 34

0xff8 12

0xff4 23

0xff0 52

…

STACK

67

Structs
A struct is a way to define a new variable type that is a group of other variables.

typedef struct {
int month;
int day;

} date;
…

date today; // construct structure instances
today.month = 1;
today.day = 28;

date new_years_eve = {12, 31}; // shorter initializer syntax

68

Structs
The arrow operator lets you access the field of a struct pointed to by a pointer.

void advance_day(date *d) {
d->day++; // equivalent to (*d).day++;

}

int main(int argc, char *argv[]) {
date my_date = {1, 28};
advance_day(&my_date);
printf("%d", my_date.day); // 29
return 0;

}

69

Overview
• Pointers overview
• ”Address of” vs. ”pass by reference”
• C arrays vs. pointers
• C Strings
• Heap Allocation

70

“Address of” vs. Pass by Reference
• In both C and C++, the ”&” operator is the “address of” operator; it gets the

address of a variable.
• In C++, ”&” also has another (!) common meaning, which is confusing; when

used in a function signature, it means you are passing a parameter by
reference.

void myFunc(int& num) {
num = 3; // DOES change the original value in the caller!

}

int main() {
int x = 2;
myFunc(x);
// now x is 3!
...

71

“Address of” vs. Pass by Reference
Pass by reference is like an “automatically-dereferenced pointer”; it’s essentially
passing a pointer, but automatically dereferencing it before use.

void myFunc(int& num) {
num = 3; // DOES change the original value in the caller!

}

int main() {
int x = 2;
myFunc(x);
// now x is 3!
...

72

“Address of” vs. Pass by Reference
When should we use pointers vs. pass by reference?
• C doesn’t have pass by reference, so we must use pointers in C programs to

achieve this kind of behavior.
• In C++, pass by reference is easier to work with than pointers, and can replace

some of the uses of pointers in our programs. But we will still need pointers in
other places, such as heap allocation.

73

Overview
• Pointers overview
• ”Address of” vs. ”pass by reference”
• Arrays vs. pointers
• C Strings
• Heap Allocation

74

Arrays
Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

When you declare a stack array, contiguous memory is
allocated to store the contents of the entire array.

char str[6];
strcpy(str, "apple");

The array variable (e.g. str) is not a pointer; it refers to the
entire array contents. In fact, sizeof returns the size of the
entire array!

int arrayBytes = sizeof(str); // 6
str

STACK

75

Arrays
An array variable refers to an entire block of memory. You cannot reassign an
existing array to be equal to a new array.

int nums[] = {1, 2, 3};
int nums2[] = {4, 5, 6, 7};
nums = nums2; // not allowed!

A stack array’s size cannot be changed once you create it; you must create
another new array instead. (heap-allocated arrays can be resized using realloc).

76

Arrays as Parameters
When you pass an array as a parameter, C makes a
copy of the address of the first array element, and
passes it (a pointer) to the function.

void myFunc(char *myStr) {
...

}

int main(int argc, char *argv[]) {
char str[3];
strcpy(str, "hi");
myFunc(str);
...

}

Address Value
0x1f2 '\0'

0x1f1 'i'

0x1f0 'h'
...

0xff

0xfe

0xfd

0xfc

0xfb

0xfa

0xf9

0xf8
...

str

mystr

main()

STACK

0x1f0myFunc()

77

Arrays as Parameters
When you pass an array as a parameter, C makes a
copy of the address of the first array element and
passes it (a pointer) to the function.

void myFunc(char *myStr) {
…

}

int main(int argc, char *argv[]) {
char str[3];
strcpy(str, "hi");
// equivalent
char *arrPtr = str;
myFunc(arrPtr);
...

}

Address Value
0x1f2 '\0'
0x1f1 'i'
0x1f0 'h'
0x1e8 0x1f0

…

0x10 0x1f0
…

str

myStr

main()

STACK

arrPtr

myFunc()

78

Arrays as Parameters
This also means we can no longer get the full size of
the array using sizeof, because now it is just a
pointer.

void myFunc(char *myStr) {
int size = sizeof(myStr); // 8

}

int main(int argc, char *argv[]) {
char str[3];
strcpy(str, "hi");
int size = sizeof(str); // 3
myFunc(str);
...

}

Address Value
0x1f2 '\0'

0x1f1 'i'

0x1f0 'h'
...

0xff

0xfe

0xfd

0xfc

0xfb

0xfa

0xf9

0xf8

str

mystr

main()

STACK

0x1f0myFunc()

79

Quirks of Arrays
One major quirk of arrays is using & directly on an array
doesn’t do anything (huh?).

int nums[4] = {4, 24, 121, -2};
int *ptr = nums; // 0x100
int *otherPtr = &nums; // also 0x100!!

Why does this happen? An array is not a pointer, but rather
represents a chunk of memory storing its elements. When
we use &, C says “oh, the address of the array? Sure, here’s
the starting address of the array”. But we can already get
that by just setting a pointer equal to the array.

Address Value
…

0x10c -2

0x108 121

0x104 24

0x100 4

…

80

& Directly On An Array
One major quirk of arrays is using & directly on an array doesn’t do anything.
Example where this causes a problem – let’s say we want to get a double
pointer to an array (pointer to something that points to the first element):
int nums[4] = {4, 24, 121, -2};
// goal
int **arrPtr = ???;
**arrPtr = 15; // should change first elem to 15

// none of these are what we want L
int **arrPtr = nums; // points to first elem
int **arrPtr = &nums; // also points to first elem!
int **arrPtr = &nums[0]; // also points to first elem!!

81

& Directly On An Array

0x100 0x104 0x108 0x10c

4 24 121 -2nums

0x100

0x412
arrPtr

0x412

int nums[4] = {4, 24, 121, -2};
int *ptr = nums; // 0x100
int **arrPtr = &ptr; // 0x412

We need to create
this as well

82

Arrays vs. Pointers Summary
• When you create an array, you are making space for each element in the array.
• When you create a pointer, you are making space for an 8 byte address.
• Arrays ”decay to pointers” when you perform arithmetic or pass as

parameters.
• You can set a pointer equal to an array; that pointer will point to the array’s

first element
• &arr does nothing on arrays, but &ptr on pointers gets its address
• sizeof(arr) gets the size of an array in bytes, but sizeof(ptr) is always 8

83

Overview
• Pointers overview
• ”Address of” vs. ”pass by reference”
• C arrays vs. pointers
• C Strings
• Heap Allocation

84

C Strings
C strings are arrays of characters ending with a null-terminating character '\0'.

String operations such as strlen use the null-terminating character to find the
end of the string.

Side note: use strlen to get the length of a string. Don’t use sizeof!

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

85

Common string.h Functions
Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),
strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before
str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

86

Substrings
We can combine pointer arithmetic and copying to make any substrings we’d
like.

// Want just "ace"
char str1[8];
strcpy(str1, "racecar");

char str2[4];
strncpy(str2, str1 + 1, 3);
str2[3] = '\0';
printf("%s\n", str1); // racecar
printf("%s\n", str2); // ace

87

char * vs. char[]
• char * is an 8-byte pointer – it stores an address of a character
• char[] is an array of characters – it stores the actual characters in a string
• When you pass a char[] as a parameter, it is automatically passed as a char *

(pointer to its first character)

88

char * vs. char[]
char myString[]

vs
char *myString

You can create char * pointers to point to any character in an existing string and
reassign them since they are just pointer variables. You cannot reassign an
array.

char myString[6];
strcpy(myString, "Hello");
myString = "Another string"; // not allowed!

char *myOtherString = myString;
myOtherString = somethingElse; // ok

89

char[]
When we declare an array of characters,
contiguous memory is allocated on the stack to
store the contents of the entire array.

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
...

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…

str

main()

STACK

90

char *
When we declare a char *, we allocate space on
the stack to store an address, not actual characters.
But we can still generally use char * the same as
char[].

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
char *strAlt = str;
...

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
0xf 0x100

…

str

strAlt

main()

STACK

91

Strings as Parameters
When we pass an array as a parameter, C makes a
copy of the address of the first array element and
passes it to the function.

void myFunc(char *myStr) {
...

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
...

}

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

92

Strings as Parameters
This means if we modify characters in myFunc,
the changes will persist back in main!

void myFunc(char *myStr) {
myStr[4] = 'y';

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
printf("%s", str); // apply
...

}

Address Value
…

0x105 '\0'
0x104 'y'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

93

Key C String Behaviors
1. If we create a string as a char[], we can modify its characters because its memory

lives in our stack space.
2. We cannot set a char[] equal to another value, because it is not a pointer; it refers

to the block of memory reserved for the original array.
3. If we pass a char[] as a parameter, set something equal to it, or perform arithmetic

with it, it’s automatically converted to a char *.
4. We can set a char * equal to another value, because it is a reassign-able pointer.
5. Adding an offset to a C string gives us a substring that many places past the first

character.
6. If we change characters in a string parameter, these changes will persist outside of the

function.

94

C vs. C++ Strings
C++ has an actual string variable type (hooray!) that provides more helpful
functionality; for this reason, we want to prefer C++ strings to C strings where
we can.
• More C string information: “man string” or other resources such as

https://cplusplus.com/reference/cstring/
• More C++ string information: resources such as

https://cplusplus.com/reference/string/string/

https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/string/string/

95

Overview
• Pointers overview
• ”Address of” vs. ”pass by reference”
• C arrays vs. pointers
• C Strings
• Heap Allocation

96

Memory Layout
The image part with relationship ID
rId2 was not found in the file.• The stack is the place where all local variables and

parameters live for each function. A function’s stack
“frame” goes away when the function returns.
• The stack grows downwards when a new function is

called and shrinks upwards when the function is
finished.
• The heap is a part of memory below the stack that you

can manage yourself. Unlike the stack, the memory
only goes away when you delete it yourself.
• Unlike the stack, the heap grows upwards as more

memory is allocated.
• The heap is dynamic memory – memory that can be

allocated, resized, and freed during program runtime.

97

The Heap
• In C, we can use malloc/realloc/free to manage heap memory.
• In C++, we can still use these C functions, but also have new/delete to manage

heap memory (and prefer these over lower-level functions where possible).

Rule of thumb: we want to default to using the stack
unless there is a reason we need heap allocation.
Heap allocation is more complex and prone to error,
so make sure to only use it where needed! (e.g. we
need a resizable array, or we need a variable to not go
away, etc.)

98

Key C Heap Functions
void *malloc(size_t size);
malloc takes in the number of bytes you want and returns a pointer to the
starting address of the new memory on the heap. The memory is not
initialized!
void free(void *ptr);

free marks the heap memory pointed to by ptr as free, meaning that we will no
longer be using it.
void *realloc(void *ptr, size_t size);

The realloc function takes an existing allocation pointer and resizes to a new
requested size. It returns a pointer to the start of the larger allocation.

99

The Heap in C
char *strdup(char *s);

strdup is a convenience function that returns a null-terminated, heap-
allocated string with the provided text, instead of you having to malloc and
copy in the string yourself.

100

The Heap in C++
In C++, we don’t need to allocate bytes manually (hooray!). Instead, the new
operator lets us allocate space for an entire type or array.

// Allocating an int on the heap
int *numPtr = malloc(sizeof(int)); // C style, manually allocating 4 bytes
int *numPtr = new int; // C++ style, less error-prone!

// Allocating an array of 4 ints on the heap
int *nums = malloc(sizeof(int) * 4); // C style, manually allocating 16 bytes
int *nums = new int[4]; // C++ style, less error-prone!

101

The Heap in C++
In C++, to free a heap allocation, we can use delete which, like free, deletes the
heap memory pointed to by the specified pointer.

// Allocating and then deleting an int
int *numPtr = new int;
...
delete numPtr;

// Allocating and then deleting an array (note [] after delete)
int *nums = new int[4];
...
delete[] nums;

102

Memory Leaks
A memory leak is when you do not free memory you previously allocated.
• Our program is responsible for cleaning up any memory it allocates but no

longer needs.
• If we never free any memory and allocate an extremely large amount, we may

run out of memory in the heap!
• However, memory leaks rarely (if ever) cause crashes.
• We recommend not to worry about freeing memory until your program is

written. Then, go back and free memory as appropriate.
• Valgrind is a very helpful tool for finding memory leaks! See

http://cs107.stanford.edu/resources/valgrind.html for a helpful guide.

http://cs107.stanford.edu/resources/valgrind.html

103

Recap
• Pointers overview
• ”Address of” vs. ”pass by reference”
• C arrays vs. pointers
• C Strings
• Heap Allocation

