
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 25
Modern Technologies and OSes

2

Key question: How do hardware
advances impact the design of operating
systems?

3

CS111 Topic 4: Virtual Memory
Modern Technologies and OSes - How do hardware advances impact the design
of operating systems?

Why is answering this question important?
• Understand the full impact and utility of modern technologies we take for

granted
• We can better understand the interplay between technology and OSes: OSes

are at the hardware-software boundary

4

Learning Goals
• Learn about multicore CPUs and how they change scheduling and lock

implementations
• Understand the benefits and drawbacks of flash storage and how flash storage

can impact filesystem design

5

Plan For Today
• Example 1: Multicore CPUs
• Example 2: Flash Storage

6

Plan For Today
• Example 1: Multicore CPUs
• Multicore scheduling
• Multicore locks

• Example 2: Flash Storage

7

Multicore CPUs
• True multitasking: multiple cores let us run multiple threads simultaneously
• Starting mid-2000s, multicore processors more common in consumer devices
• OS manages these cores; new challenges!

8

Multicore CPUs
• Most modern consumer devices (phones, tablets, PCs) have

multiple cores. Examples:
• Latest iPhone processors have 6 cores
• Latest Snapdragon smartphone processors (common for Android

devices) have 8 cores
• Latest Intel processors have up to 24 cores

• Now more common to have different types of cores; e.g.
“performance” and “efficiency”:
• less-intensive tasks run on efficiency cores; more power-efficient
• More intensive tasks run on performance cores; better performance
• Apple, Intel + Qualcomm (major processor manufacturers) use this

approach (Qualcomm has 3 types of cores)
• E.g. iPhone 15 has 2 P-cores, 4 E-cores, one Intel Core i5 chip has 4

P-cores, 8 E-cores

https://arstechnica.com/gadgets/2023/10/qualcomms-snapdragon-8-gen-3-promises-30-percent-faster-cpu/
https://www.intel.com/content/www/us/en/products/details/processors/core.html
https://developer.apple.com/news/?id=vk3m204o
https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html
https://arstechnica.com/gadgets/2023/10/qualcomms-snapdragon-8-gen-3-promises-30-percent-faster-cpu/

9

Aside: Other Hardware
• GPU is in charge of graphics
• Newer Development: NPU (“Neural Processing Unit”) / TPU (“Tensor

Processing Unit”) / ”Neural Engine” powers machine learning / AI tasks

10

Multicore Challenges
OS management of multiple cores surfaces new challenges:
• Example: how does scheduling work with multiple CPUs?
• Example: how can we implement mutexes where there are multiple CPUs?

11

Plan For Today
• Example 1: Multicore CPUs
• Multicore scheduling
• Multicore locks

• Example 2: Flash Storage

12

Scheduling
Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads).
Previously: First-Come-First-Serve, Round-Robin, SRPT, Priority-Based

What about when we have multiple cores to schedule threads on? (assume all
cores equal)

13

Multicore Scheduling
Initial idea: one ready queue shared by k cores
• Share ready queue data structure across cores, lock to synchronize access
• One dispatcher per core
• Separate timer interrupts for each core
• Run the k highest-priority threads on the k cores
• When a new thread is marked “ready”, compare its priority against lowest-

priority running thread, preempt if new thread has higher priority.
• This works fine for 2 cores but breaks down with lots more cores. What is the

main bottleneck with this approach when used with many cores?

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

14

15

Multicore Scheduling
The single ready queue is a huge bottleneck - cores must wait for access!

Modification: have 1 ready queue per core.
Problem: how do we balance threads across different ready queues?
One idea: “work stealing”: if one core is free, take a thread from another core’s
ready queue
• Maybe want to also do this prior to ready queue being empty? e.g. if one core

has 1 ready thread and another core has 30 ready threads, the 30 threads will
get less time than the 1 thread.

Another challenge: expensive to move a thread to another core.

16

Core Affinity
Another challenge: expensive to move a thread to another core.
• Cores have caches for data; if we move to a new core, won’t have cached data
• Multiprocessor schedulers try to keep threads on same core – “core affinity”
• Maybe better in some cases to just wait for current core instead of moving?

Tension between work stealing (want to move often) and core affinity (don’t
want to move often)

17

Gang Scheduling
How should we approach scheduling if one process has several threads?
• threads may be coordinating / exchanging info
• “gang scheduling” – run all threads together on different cores.
• Why? Thread progress may be intertwined. E.g. one thread holds lock then de-

scheduled, another runs but soon needs to wait for that same lock.

18

Multicore Scheduling
In general: these systems all have good and bad situations – e.g. Linux scheduler
had problems for many years, better now, but still some problems with load
balancing and moving threads too rapidly between cores.

19

Plan For Today
• Example 1: Multicore CPUs
• Multicore scheduling
• Multicore locks

• Example 2: Flash Storage

20

Single-Core Locks

class Lock {
 int locked = 0;
 ThreadQueue q;
};

void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

So far: our Mutex implementation relied on disabling interrupts to prevent race
conditions.

21

Multicore Locks
Problem: only works with single-core processors! If multiple cores, even if
interrupts are disabled, some other thread could be running on another core.
How do we approach this on multicore systems?
• Turn off all other cores? Not a great option.

Key Idea: we must use a (small amount) of busy waiting (!!). We need a
mechanism for cores to sync up before proceeding, and setting/checking a
shared value is the only option.
• There’s no other way to synchronize with the other cores; until we have

synchronized, we can’t even put a thread to sleep

22

Single-Core Locks
class Lock {
 int locked = 0;
 ThreadQueue q;
};

void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

23

Multicore Locks, V1
class Lock {
 int locked = 0;
 ThreadQueue q;
 int sync = 0;
};

void Lock::lock() {
 // try to change sync from 0 to 1
 while (true) {
 int old = sync;
 sync = 1;
 if (old == 0) break;
 }
 // we are only one proceeding now

 if (!locked) {
 locked = 1;
 sync = 0;
 } else {
 q.add(currentThread);
 sync = 0;
 blockThread();
 }
}

24

Multicore Locks, V1
class Lock {
 int locked = 0;
 ThreadQueue q;
 std::atomic<int> sync(0);
};

void Lock::lock() {
 // try to change sync from 0 to 1
 while (sync.exchange(1)) {}
 // we are only one proceeding now

 if (!locked) {
 locked = 1;
 sync = 0;
 } else {
 q.add(currentThread);
 sync = 0;
 blockThread();
 }
}

exchange: an atomic operation that reads the memory value,
replaces it with a given value, and returns the old value.

25

Multicore Locks, V1
class Lock {
 int locked = 0;
 ThreadQueue q;
 std::atomic<int> sync(0);
};

void Lock::lock() {
 // try to change sync from 0 to 1
 while (sync.exchange(1)) {}
 // we are only one proceeding now

 if (!locked) {
 locked = 1;
 sync = 0;
 } else {
 q.add(currentThread);
 sync = 0;
 blockThread();
 }
}

std::atomic is a C++
type that provides
atomic operations for its
contained data. We use
it here for the atomic
exchange operation.

26

Multicore Locks, V1
class Lock {
 int locked = 0;
 ThreadQueue q;
 std::atomic<int> sync(0);
};

void Lock::unlock() {
 // try to change sync from 0 to 1
 while (sync.exchange(1)) {}
 // we are only one proceeding now

 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
 sync = 0;
}

exchange: an atomic operation that reads the memory value,
replaces it with a given value, and returns the old value.

27

Multicore Locks
Key idea: we’ll rely on atomic instructions provided by hardware to avoid race
conditions when we have multiple cores.

Example: exchange: atomically read memory value, replace it with a given value,
and get old value.

Additionally: single-word references and assignments (e.g., assigning ints,
pointers, chars) are atomic on almost all systems.

Busy waiting unavoidable! However, it’s very short – just long enough to
manipulate the lock structure.

28

Multicore Locks, V1
class Lock {
 int locked = 0;
 ThreadQueue q;
 std::atomic<int> sync(0);
};

void Lock::lock() {
 while (sync.exchange(1)) {}
 if (!locked) {
 locked = 1;
 sync = 0;
 } else {
 q.add(currentThread);
 sync = 0;
 blockThread();
 }
}

void Lock::unlock() {
 while (sync.exchange(1)) {};
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
 sync = 0;
}

29

Multicore Locks, V1
class Lock {
 int locked = 0;
 ThreadQueue q;
 std::atomic<int> sync(0);
};

void Lock::lock() {
 while (sync.exchange(1)) {}
 if (!locked) {
 locked = 1;
 sync = 0;
 } else {
 q.add(currentThread);
 sync = 0;
 blockThread();
 }
}

void Lock::unlock() {
 while (sync.exchange(1)) {};
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
 sync = 0;
}

Problem: there’s an air gap in between unlocking the lock
and blocking. Another thread could call unlock here,
unblocking us, and then we block forever L

30

Multicore Locks
We won’t worry about these, but there are a few more steps/tweaks needed
(specifically; tweaking how we block to fix race condition and continuing to use
IntrGuard to disable interrupts). (See optional slides at end if you’re interested!)

Key overarching ideas:
• On multicore, disabling interrupts is not sufficient to eliminate race conditions
• Instead, we must rely on brief busy-waiting and provided atomic operations

(exchange) to sync up cores before proceeding.

31

Plan For Today
• Example 1: Multicore CPUs
• Example 2: Flash Storage

32

Flash Storage
• Much faster than hard disks: no moving parts (no seek delays from

platters/head!), smaller, faster
• Flash storage has become more common with increase in mobile devices,

nowadays common in PCs too.
• Can buy separately, or some devices have non-removable storage (e.g., many

mobile devices)
• New opportunities and challenges with managing filesystem designs for flash -

has own quirks

33

Flash Storage Quirks
Quirk #1: Writing Data: flash storage doesn’t support just writing arbitrary data
to a portion of the storage. Instead, it supports two operations that combined
allow us to write data:
• Erase: set all bits of an erase unit to 1. The storage is divided up into erase

units, typically 256Kbytes big.
• Write: modify one page, can only clear bits to 0. The storage is also divided up

into pages, typically 512 bytes or 4Kbytes big.

34

Flash Storage Quirks
Quirk #2: Wear-out: after erasing an erase unit many times, it no longer reliably
stores data (!). Typically, around 100K.

Wear Leveling: want erase units to erase at same rate everywhere (rather than
having some parts wear out before others). Ideas about moving “hot” (short-
lived) and “cold” (long-lived) data around to even out storage usage.

35

Flash Storage and Filesystem Design
• A common approach has been to abstract away these quirks and include

software in the Flash Storage that makes it look like a hard disk.
• “Flash Translation Layer” – software that manages flash device, built in to drive, typically

mimics disk interface (read/write blocks)
• OS has no visibility into erase units, etc. – looks like a disk! Virtualization.
• Advantage: use existing filesystem software
• Disadvantages: sacrifice performance, waste capacity, no direct access to raw hardware,

unnecessary layers

• Lots of interesting questions about what filesystems would look like if designed
with flash storage in mind, without an FTL. Many research projects!
• Other storage technologies in the future?

36

Recap
• Example 1: Multicore CPUs
• Multicore scheduling
• Multicore locks

• Example 2: Flash Storage

Lecture 25 takeaway:
Operating systems and
hardware changes are tightly
intertwined; multicore
processors and flash storage
provide two examples of the
impact of hardware changes
on OS implementations.

37

Extra Slides

38

Multicore Locks, V2
Somehow, we need to block and then unlock the lock??
• Key insight: we don’t need to block prior to unlocking the lock; we just need to

be marked as blocked.
• Solution (awkward): let’s change the interface of our thread

scheduler/dispatcher to allow us to separately mark a thread as blocked and
context switch. (Linux does something like this).

39

Multicore Locks, V2
class Lock {
 int locked = 0;
 ThreadQueue q;
 std::atomic<int> sync(0);
};

void Lock::lock() {
 while (sync.exchange(1)) {}
 if (!locked) {
 locked = 1;
 sync = 0;
 } else {
 q.add(currentThread);
 currentThread->state = BLOCKED;
 sync = 0;
 blockThreadIfNecessary();
 }
}

void Lock::unlock() {
 while (sync.exchange(1)) {};
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
 sync = 0;
}

40

Multicore Locks, Final Version
One last change – we must disable interrupts.
• E.g. if the timer fires right after we acquire the int, another thread trying to get

it would just busy wait, wasting resources.

void Lock::lock() {
 while (sync.exchange(1)) {}
 if (!locked) {
 locked = 1;
 sync = 0;
 } else {
 q.add(currentThread);
 currentThread->state = BLOCKED;
 sync = 0;
 blockThreadIfNecessary();
 }
}

41

Multicore Locks, Final Version
class Lock {
 int locked = 0;
 ThreadQueue q;
 std::atomic<int> sync(0);
};

void Lock::lock() {
 IntrGuard guard;
 while (sync.exchange(1)) {}
 if (!locked) {
 locked = 1;
 sync = 0;
 } else {
 q.add(currentThread);
 currentThread->state = BLOCKED;
 sync = 0;
 blockThreadIfNecessary();
 }
}

void Lock::unlock() {
 IntrGuard guard;
 while (sync.exchange(1)) {};
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
 sync = 0;
}

