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CS111, Lecture 25
Modern Technologies and OSes
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Key question: How do hardware 
advances impact the design of operating 
systems?
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CS111 Topic 4: Virtual Memory
Modern Technologies and OSes - How do hardware advances impact the design 
of operating systems?

Why is answering this question important?
• Understand the full impact and utility of modern technologies we take for 

granted
• We can better understand the interplay between technology and OSes: OSes 

are at the hardware-software boundary
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Learning Goals
• Learn about multicore CPUs and how they change scheduling and lock 

implementations
• Understand the benefits and drawbacks of flash storage and how flash storage 

can impact filesystem design
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Plan For Today
• Example 1: Multicore CPUs
• Example 2: Flash Storage
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Plan For Today
• Example 1: Multicore CPUs
• Multicore scheduling
• Multicore locks

• Example 2: Flash Storage
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Multicore CPUs
• True multitasking: multiple cores let us run multiple threads simultaneously
• Starting mid-2000s, multicore processors more common in consumer devices
• OS manages these cores; new challenges!
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Multicore CPUs
• Most modern consumer devices (phones, tablets, PCs) have 

multiple cores.  Examples:
• Latest iPhone processors have 6 cores
• Latest Snapdragon smartphone processors (common for Android 

devices) have 8 cores
• Latest Intel processors have up to 24 cores

• Now more common to have different types of cores; e.g. 
“performance” and “efficiency”: 
• less-intensive tasks run on efficiency cores; more power-efficient
• More intensive tasks run on performance cores; better performance
• Apple, Intel + Qualcomm (major processor manufacturers) use this 

approach (Qualcomm has 3 types of cores)
• E.g. iPhone 15 has 2 P-cores, 4 E-cores, one Intel Core i5 chip has 4 

P-cores, 8 E-cores

https://arstechnica.com/gadgets/2023/10/qualcomms-snapdragon-8-gen-3-promises-30-percent-faster-cpu/
https://www.intel.com/content/www/us/en/products/details/processors/core.html
https://developer.apple.com/news/?id=vk3m204o
https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html
https://arstechnica.com/gadgets/2023/10/qualcomms-snapdragon-8-gen-3-promises-30-percent-faster-cpu/
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Aside: Other Hardware
• GPU is in charge of graphics
• Newer Development: NPU (“Neural Processing Unit”) / TPU (“Tensor 

Processing Unit”) / ”Neural Engine” powers machine learning / AI tasks
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Multicore Challenges
OS management of multiple cores surfaces new challenges:
• Example: how does scheduling work with multiple CPUs?
• Example: how can we implement mutexes where there are multiple CPUs?
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Plan For Today
• Example 1: Multicore CPUs
• Multicore scheduling
• Multicore locks

• Example 2: Flash Storage
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Scheduling
Key Question: How does the operating system decide which thread to run next? 
(e.g. many ready threads).
Previously: First-Come-First-Serve, Round-Robin, SRPT, Priority-Based

What about when we have multiple cores to schedule threads on? (assume all 
cores equal)



13

Multicore Scheduling
Initial idea: one ready queue shared by k cores
• Share ready queue data structure across cores, lock to synchronize access
• One dispatcher per core
• Separate timer interrupts for each core
• Run the k highest-priority threads on the k cores
• When a new thread is marked “ready”, compare its priority against lowest-

priority running thread, preempt if new thread has higher priority.
• This works fine for 2 cores but breaks down with lots more cores.  What is the 

main bottleneck with this approach when used with many cores?

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.
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Multicore Scheduling
The single ready queue is a huge bottleneck - cores must wait for access!

Modification: have 1 ready queue per core.
Problem: how do we balance threads across different ready queues?
One idea: “work stealing”: if one core is free, take a thread from another core’s 
ready queue
• Maybe want to also do this prior to ready queue being empty?  e.g. if one core 

has 1 ready thread and another core has 30 ready threads, the 30 threads will 
get less time than the 1 thread.

Another challenge: expensive to move a thread to another core.
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Core Affinity
Another challenge: expensive to move a thread to another core.
• Cores have caches for data; if we move to a new core, won’t have cached data
• Multiprocessor schedulers try to keep threads on same core – “core affinity”
• Maybe better in some cases to just wait for current core instead of moving?

Tension between work stealing (want to move often) and core affinity (don’t 
want to move often)
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Gang Scheduling
How should we approach scheduling if one process has several threads?
• threads may be coordinating / exchanging info
• “gang scheduling” – run all threads together on different cores.  
• Why?  Thread progress may be intertwined.  E.g. one thread holds lock then de-

scheduled, another runs but soon needs to wait for that same lock.
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Multicore Scheduling
In general: these systems all have good and bad situations – e.g. Linux scheduler 
had problems for many years, better now, but still some problems with load 
balancing and moving threads too rapidly between cores.
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Plan For Today
• Example 1: Multicore CPUs
• Multicore scheduling
• Multicore locks

• Example 2: Flash Storage
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Single-Core Locks

class Lock {
    int locked = 0;
    ThreadQueue q;
};

void Lock::lock() {
    IntrGuard guard;
    if (!locked) {
        locked = 1;
    } else {
        q.add(currentThread);
        blockThread();
    }
}

void Lock::unlock() {
    IntrGuard guard;
    if (q.empty()) {
        locked = 0;
    } else {
        unblockThread(q.remove());
    }
}

So far: our Mutex implementation relied on disabling interrupts to prevent race 
conditions.
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Multicore Locks
Problem: only works with single-core processors!  If multiple cores, even if 
interrupts are disabled, some other thread could be running on another core.
How do we approach this on multicore systems?
• Turn off all other cores?  Not a great option.

Key Idea: we must use a (small amount) of busy waiting (!!).  We need a 
mechanism for cores to sync up before proceeding, and setting/checking a 
shared value is the only option.
• There’s no other way to synchronize with the other cores; until we have 

synchronized, we can’t even put a thread to sleep
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Single-Core Locks
class Lock {
    int locked = 0;
    ThreadQueue q;
};

void Lock::lock() {
    IntrGuard guard;
    if (!locked) {
        locked = 1;
    } else {
        q.add(currentThread);
        blockThread();
    }
}

void Lock::unlock() {
    IntrGuard guard;
    if (q.empty()) {
        locked = 0;
    } else {
        unblockThread(q.remove());
    }
}
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Multicore Locks, V1
class Lock {
    int locked = 0;
    ThreadQueue q;
    int sync = 0;
};

void Lock::lock() {
    // try to change sync from 0 to 1
    while (true) {
        int old = sync;
        sync = 1;
        if (old == 0) break;
    }
    // we are only one proceeding now

    if (!locked) {
        locked = 1;
        sync = 0;
    } else {
        q.add(currentThread);
        sync = 0;
        blockThread();
    }
}
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Multicore Locks, V1
class Lock {
    int locked = 0;
    ThreadQueue q;
    std::atomic<int> sync(0);
};

void Lock::lock() {
    // try to change sync from 0 to 1
    while (sync.exchange(1)) {}
    // we are only one proceeding now

    if (!locked) {
        locked = 1;
        sync = 0;
    } else {
        q.add(currentThread);
        sync = 0;
        blockThread();
    }
}

exchange: an atomic operation that reads the memory value, 
replaces it with a given value, and returns the old value.
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Multicore Locks, V1
class Lock {
    int locked = 0;
    ThreadQueue q;
    std::atomic<int> sync(0);
};

void Lock::lock() {
    // try to change sync from 0 to 1
    while (sync.exchange(1)) {}
    // we are only one proceeding now

    if (!locked) {
        locked = 1;
        sync = 0;
    } else {
        q.add(currentThread);
        sync = 0;
        blockThread();
    }
}

std::atomic is a C++ 
type that provides 
atomic operations for its 
contained data.  We use 
it here for the atomic 
exchange operation.
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Multicore Locks, V1
class Lock {
    int locked = 0;
    ThreadQueue q;
    std::atomic<int> sync(0);
};

void Lock::unlock() {
    // try to change sync from 0 to 1
    while (sync.exchange(1)) {}
    // we are only one proceeding now

    if (q.empty()) {
        locked = 0;
    } else {
        unblockThread(q.remove());
    }
    sync = 0;
}

exchange: an atomic operation that reads the memory value, 
replaces it with a given value, and returns the old value.
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Multicore Locks
Key idea: we’ll rely on atomic instructions provided by hardware to avoid race 
conditions when we have multiple cores.

Example: exchange: atomically read memory value, replace it with a given value, 
and get old value.

Additionally: single-word references and assignments (e.g., assigning ints, 
pointers, chars) are atomic on almost all systems.

Busy waiting unavoidable!  However, it’s very short – just long enough to 
manipulate the lock structure.
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Multicore Locks, V1
class Lock {
    int locked = 0;
    ThreadQueue q;
    std::atomic<int> sync(0);
};

void Lock::lock() {
    while (sync.exchange(1)) {}
    if (!locked) {
        locked = 1;
        sync = 0;
    } else {
        q.add(currentThread);
        sync = 0;
        blockThread();
    }
}

void Lock::unlock() {
    while (sync.exchange(1)) {};
    if (q.empty()) {
        locked = 0;
    } else {
        unblockThread(q.remove());
    }
    sync = 0;
}
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Multicore Locks, V1
class Lock {
    int locked = 0;
    ThreadQueue q;
    std::atomic<int> sync(0);
};

void Lock::lock() {
    while (sync.exchange(1)) {}
    if (!locked) {
        locked = 1;
        sync = 0;
    } else {
        q.add(currentThread);
        sync = 0;
        blockThread();
    }
}

void Lock::unlock() {
    while (sync.exchange(1)) {};
    if (q.empty()) {
        locked = 0;
    } else {
        unblockThread(q.remove());
    }
    sync = 0;
}

Problem: there’s an air gap in between unlocking the lock 
and blocking.  Another thread could call unlock here, 
unblocking us, and then we block forever L
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Multicore Locks
We won’t worry about these, but there are a few more steps/tweaks needed 
(specifically; tweaking how we block to fix race condition and continuing to use 
IntrGuard to disable interrupts).  (See optional slides at end if you’re interested!)

Key overarching ideas:
• On multicore, disabling interrupts is not sufficient to eliminate race conditions
• Instead, we must rely on brief busy-waiting and provided atomic operations 

(exchange) to sync up cores before proceeding.
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Plan For Today
• Example 1: Multicore CPUs
• Example 2: Flash Storage
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Flash Storage
• Much faster than hard disks: no moving parts (no seek delays from 

platters/head!), smaller, faster
• Flash storage has become more common with increase in mobile devices, 

nowadays common in PCs too.
• Can buy separately, or some devices have non-removable storage (e.g., many 

mobile devices)
• New opportunities and challenges with managing filesystem designs for flash - 

has own quirks



33

Flash Storage Quirks
Quirk #1: Writing Data: flash storage doesn’t support just writing arbitrary data 
to a portion of the storage.  Instead, it supports two operations that combined 
allow us to write data:
• Erase: set all bits of an erase unit to 1.  The storage is divided up into erase 

units, typically 256Kbytes big.
• Write: modify one page, can only clear bits to 0.  The storage is also divided up 

into pages, typically 512 bytes or 4Kbytes big.
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Flash Storage Quirks
Quirk #2: Wear-out: after erasing an erase unit many times, it no longer reliably 
stores data (!).  Typically, around 100K.

Wear Leveling: want erase units to erase at same rate everywhere (rather than 
having some parts wear out before others).  Ideas about moving “hot” (short-
lived) and “cold” (long-lived) data around to even out storage usage.
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Flash Storage and Filesystem Design
• A common approach has been to abstract away these quirks and include 

software in the Flash Storage that makes it look like a hard disk.
• “Flash Translation Layer” – software that manages flash device, built in to drive, typically 

mimics disk interface (read/write blocks)
• OS has no visibility into erase units, etc. – looks like a disk!  Virtualization.
• Advantage: use existing filesystem software
• Disadvantages: sacrifice performance, waste capacity, no direct access to raw hardware, 

unnecessary layers

• Lots of interesting questions about what filesystems would look like if designed 
with flash storage in mind, without an FTL.  Many research projects!
• Other storage technologies in the future?
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Recap
• Example 1: Multicore CPUs
• Multicore scheduling
• Multicore locks

• Example 2: Flash Storage

Lecture 25 takeaway: 
Operating systems and 
hardware changes are tightly 
intertwined; multicore 
processors and flash storage 
provide two examples of the 
impact of hardware changes 
on OS implementations.
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Extra Slides
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Multicore Locks, V2
Somehow, we need to block and then unlock the lock??
• Key insight: we don’t need to block prior to unlocking the lock; we just need to 

be marked as blocked.
• Solution (awkward): let’s change the interface of our thread 

scheduler/dispatcher to allow us to separately mark a thread as blocked and 
context switch. (Linux does something like this).
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Multicore Locks, V2
class Lock {
    int locked = 0;
    ThreadQueue q;
    std::atomic<int> sync(0);
};

void Lock::lock() {
    while (sync.exchange(1)) {}
    if (!locked) {
        locked = 1;
        sync = 0;
    } else {
        q.add(currentThread);
        currentThread->state = BLOCKED;
        sync = 0;
        blockThreadIfNecessary();
    }
}

void Lock::unlock() {
    while (sync.exchange(1)) {};
    if (q.empty()) {
        locked = 0;
    } else {
        unblockThread(q.remove());
    }
    sync = 0;
}
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Multicore Locks, Final Version
One last change – we must disable interrupts.
• E.g. if the timer fires right after we acquire the int, another thread trying to get 

it would just busy wait, wasting resources.

void Lock::lock() {
    while (sync.exchange(1)) {}
    if (!locked) {
        locked = 1;
        sync = 0;
    } else {
        q.add(currentThread);
        currentThread->state = BLOCKED;
        sync = 0;
        blockThreadIfNecessary();
    }
}



41

Multicore Locks, Final Version
class Lock {
    int locked = 0;
    ThreadQueue q;
    std::atomic<int> sync(0);
};

void Lock::lock() {
    IntrGuard guard;
    while (sync.exchange(1)) {}
    if (!locked) {
        locked = 1;
        sync = 0;
    } else {
        q.add(currentThread);
        currentThread->state = BLOCKED;
        sync = 0;
        blockThreadIfNecessary();
    }
}

void Lock::unlock() {
    IntrGuard guard;
    while (sync.exchange(1)) {};
    if (q.empty()) {
        locked = 0;
    } else {
        unblockThread(q.remove());
    }
    sync = 0;
}


