
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 26
Ethics and Trust, continued

2

Learning Goals
• Reflect on aspects of trust, when we trust systems/others, and how we choose

to trust systems/others
• Learn about examples of trust / isolation not being upheld in systems

3

Trust + Operating Systems
• Properties of OSes (immense scale) provide a unique lens through which to

examine how we trust software.
• All software, especially OSes, can have a large impact on the people that use it,

and they can put significant trust in that software.
• Examining ideas about trust can help us better consider how we might

approach building trust into the software we build.

4

Plan For Today
• Who/what do we trust, and why? (from last time)
• What do we do when trust is not upheld?
• How might we approach building trust into the software we build?

5

Plan For Today
• Who/what do we trust, and why?
• What do we do when trust is not upheld?
• How might we approach building trust into the software we build?

6

Trust
Trust is to stop questioning the dependability of something.
• Efficiency/safety tradeoff: trust lowers the barriers of monitoring and

questioning (more efficient)
• Involves intentions, dependence, vulnerability/risk
• Agency: our capacity to take actions that align with our goals
• “when we trust, we try to make something a part of our agency... To unquestioningly

trust something is to let it in—to attempt to bring it inside one’s practical functioning.” -
CT Nguyen
• Trusting software is extending agency

• Agential gullibility: trusting more than is warranted

https://philarchive.org/rec/NGUTAA

7

3 Paths to Trust
1. Trust by Assumption: trust absent any clues to warrant it

1. Example: using unknown 3rd party library because deadline is approaching
2. Example: warnings from others about imminent danger (e.g. “look out for the car!”)

2. Trust by Inference: trust based on information, e.g. past performance,
characteristics, institutions
1. Example: trust in brands or affiliation (weaker)
2. Example: past performance (stronger)
3. Example: trust in prior versions of software

3. Trust by Substitution: trust by implementing system to partly replace the
need to trust something (“Plan B”)
1. E.g. set an alarm on a second device in case the alarm on your phone doesn’t work
2. E.g. using unique, fake per-app emails for login, in case your personal info is leaked

Paul B. de Laat: How can contributors to open-source communities be trusted? On the assumption, inference, and substitution of trust

8

Plan For Today
• Who/what do we trust, and why?
• What do we do when trust is not upheld?
• Case study: Meltdown vulnerability

• How might we approach building trust into the software we build?

9

OS and User in Same Address Space

0

∞
Operating
System

Code

Data

Stack

Process 1

Operating
System

Code

Data

Stack

Process 2

OS in all
Address
Spaces

10

OS Execution
How does virtual memory work when the OS runs?
OS has space in every process’s virtual address space. Not a duplicate of OS;
every virtual space could map to same physical memory.

Problem: don’t want user program accessing OS pages.
Solution: new bit in page table that marks kernel-only pages. When in user
mode, not accessible, but accessible when OS is running.

11

Meltdown
Meltdown is a hardware vulnerability publicly disclosed in 2018 that allows a
program to access kernel-only pages. (https://meltdownattack.com)

"Meltdown is a novel attack that allows overcoming memory
isolation completely by providing a simple way for any user
process to read the entire kernel memory of the machine it
executes on, including all physical memory mapped in the
kernel region.”

https://meltdownattack.com/

12

Meltdown
Meltdown is a hardware vulnerability publicly disclosed in 2018 that allows a
program to access kernel-only pages. (https://meltdownattack.com)

• fixes in later processors, patched in OSes

https://meltdownattack.com/
https://www.anandtech.com/show/12533/intel-spectre-meltdown

13

Discussion Question #1
How do we decide how / whether to fix a potential vulnerability / violation of
trust? How do we evaluate tradeoffs in performance penalties, user
convenience, and other factors?

- E.g., what if vulnerability is unlikely or difficult to exploit?
- E.g., what if fix causes a performance penalty or other user inconvenience?
- E.g., do we make a fix opt-out or opt-in?

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

14

Discussion Question #2
How, if at all, do we hold parties accountable? Who holds them accountable?
Examples of accountable parties could include:

- Hardware designers (e.g. Intel)
- OS designers (e.g. Microsoft Windows, Google Android, Apple iOS)
- App developers
- Users

15

Plan For Today
• Who/what do we trust, and why?
• What do we do when trust is not upheld?
• Case study: Meltdown vulnerability

• How might we approach building trust into the software we build?

16

Building In Trust
Considerations might include:
• Who are the stakeholders?
• How pervasive is it?
• What are the long-term intentions?

17

Stakeholders
Direct stakeholders: directly interact with the system
Indirect stakeholders: affected by the system without directly using it

Example: medical office use device
• Direct stakeholders: medical professional operating the device, service

technician maintaining device
• Indirect stakeholders: patients

18

Pervasiveness
• How widespread is the use?
• What is the use case? (personal, recreation, critical infrastructure)
• Considerations about crossing national boundaries (different rules, customs,

infrastructure)
• Considerations about cultural and political implications

19

Time
• Support duration (long-term support) - assign2
• Obsolescence: how do we manage end of support?
• Example: long-term support for operating systems (assign2)
• Example: software updates
• Example: online services (e.g. games with online components)

• Other scenarios where product/support may not be guaranteed forever
• Example: subscription content services
• Example: company going out of business, no longer maintains/supports product

• What does halting use look like?
• Example: Threads app initially not supporting account deletion without deleting

Instagram account

20

Discussion Question #3
What are other examples of products you have used where you may or may not
have factored in how long that product/software might be supported? What
can/should the product creators do?

21

Plan For Today
• Who/what do we trust, and why?
• What do we do when trust is not upheld?
• How might we approach building trust into the software we build?

22

Key Takeaways
Trust is often required, powerful, and dangerous. Key design challenge is how
we design structures that enable us to substitute trust.

1. Trust amongst parties can be intertwined
2. Trust is about extending agency, enabling “unquestioning attitude”
3. Trust emerges through assumption, inference, substitution
4. Can design ways to (partially) substitute need to trust

Considerations for trust include stakeholders, pervasiveness, time

23

Reflections on Trusting Trust

https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf

https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf

24

Plan For Today
• Who/what do we trust, and why?
• What do we do when trust is not upheld?
• How might we approach building trust

into the software we build?

Lecture 26 takeaway:
Trust is often required,
powerful, and dangerous.
Key design challenge is
how we design structures
that enable us to
substitute trust.

