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CS111, Lecture 13
Race Conditions and Locks

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 5.2-5.4 

and Section 6.5
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CS111 Topic 3: Multithreading, Part 1

Multithreading 
Introduction

Race 
conditions and 

locks

Locks and 
Condition 
Variables

Multithreading 
Patterns

Last lecture This Lecture Lecture 14 Lecture 15

assign4: implement several multithreaded programs while eliminating race conditions!

Topic 3: Multithreading - How can we have concurrency within a single 
process? How does the operating system support this?
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Learning Goals
• Understand how to identify critical sections and fix race conditions/deadlock
• Learn how locks can help us limit access to shared resources
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Plan For Today
• Recap: Threads
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .
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Plan For Today
• Recap: Threads
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .
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From Processes to Threads
We can have concurrency within a single process using threads: independent 
execution sequences within a single process.
• Threads let us run multiple functions in our program concurrently (e.g.

parallelize computation)
• Each thread operates within the same process, so they share a virtual address 

space (!) (globals, heap, pass by reference, etc.)
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C++ Thread
A thread object can be spawned to run the specified function with the given 
arguments.

thread myThread(myFunc, arg1, arg2, ...);

• myFunc: the function the thread should execute asynchronously
• args: a list of arguments (any length, or none) to pass to the function
• myFunc’s function's return value is ignored (use pass by reference instead)
• Once initialized with this constructor, the thread may execute at any time!



8

C++ Thread
To wait on a thread to finish, use the .join() method:

thread myThread(myFunc, arg1, arg2);
...
// Wait for thread to finish (blocks) 
myThread.join();

For multiple threads, we must wait on a specific thread one at a time:

thread friends[5];
...
for (int i = 0; i < 5; i++) {

friends[i].join();
}
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Race Conditions
• Like with processes, threads can execute in unpredictable orderings.
• A race condition is an unpredictable ordering of events where some orderings 

may cause undesired behavior.
• An example where race conditions can occur is 

with operator<<. e.g. cout statements could get interleaved!
• To avoid this, use oslock and osunlock (custom CS111 functions - #include 

"ostreamlock.h") around streams. They ensure at most one thread has 
permission to write into a stream at any one time.

cout << oslock << "Hello, world!" << endl << osunlock;
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Parallelizing Tasks
Simulation: let each thread help sell the 250 tickets until none are left.

const size_t kNumTicketAgents = 10; 
int main(int argc, const char *argv[]) { 

thread ticketAgents[kNumTicketAgents]; 
size_t remainingTickets = 250; 

for (size_t i = 0; i < kNumTicketAgents; i++) { 
ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets)); 

} 

for (size_t i = 0; i < kNumTicketAgents; i++) { 
ticketAgents[i].join(); 

} 
cout << "Ticket selling done!" << endl; 
return 0;

}
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Race Condition: Overselling Tickets
There is a race condition here!  Threads could interrupt each other in between 
checking for remaining tickets and selling them.

• If thread A sees tickets remaining and commits to selling a ticket, another 
thread B could come in and sell that same ticket before thread A does.
• This can happen because this portion of code isn’t atomic.

static void sellTickets(size_t id, size_t& remainingTickets) { 
    while (remainingTickets > 0) { 
        sleep_for(500); // simulate "selling a ticket" 
        remainingTickets--; 
        ...
    } 
    ...
}
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Race Condition: Overselling Tickets
If thread A sees tickets remaining and commits to selling a ticket, another thread 
B could come in and sell that same ticket before thread A does.

• Atomic means it happens in its entirety without interruption. Cannot be 
observed in the middle.
• We want a thread to do the entire check-and-sell operation uninterrupted by 

other threads executing this region.

static void sellTickets(size_t id, size_t& remainingTickets) { 
    while (remainingTickets > 0) { 
        sleep_for(500); // simulate "selling a ticket" 
        remainingTickets--; 
        ...
    } 
    ...
}
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It would be nice if we could 
allow only one thread at a 
time to execute a region of 

code.
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Plan For Today
• Recap: Threads
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .
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Critical Section
A critical section is a section of code that should be executed by only one thread 
at a time.

What should we make a critical section?   Key: keep them as small as possible to 
protect performance.

static void sellTickets(size_t id, size_t& remainingTickets) { 
    while (remainingTickets > 0) { 
        sleep_for(500); // simulate "selling a ticket" 
        remainingTickets--; 
        cout << oslock << "Thread #" << id << " sold a ticket (" 
             << remainingTickets << " remain)." << endl << osunlock; 
    } 
    cout << oslock << "Thread #" << id 
    << " sees no remaining tickets to sell and exits." << endl << osunlock; 
}
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Critical Section
A critical section is a section of code that should be executed by only one thread 
at a time.

What should we make a critical section?   Key: keep them as small as possible to 
protect performance.

static void sellTickets(size_t id, size_t& remainingTickets) { 
while (remainingTickets > 0) { 

sleep_for(500); // simulate "selling a ticket" 
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket (" 

<< remainingTickets << " remain)." << endl << osunlock; 
    } 
    cout << oslock << "Thread #" << id 
    << " sees no remaining tickets to sell and exits." << endl << osunlock; 
}
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Critical Section
A critical section is a section of code that should be executed by only one thread 
at a time.

What should we make a critical section?   Key: keep them as small as possible to 
protect performance.

static void sellTickets(size_t id, size_t& remainingTickets) { 
    while (true) {

if (remainingTickets == 0) break; 
sleep_for(500); // simulate "selling a ticket" 
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket (" 

<< remainingTickets << " remain)." << endl << osunlock; 
    } 
    cout << oslock << "Thread #" << id 
    << " sees no remaining tickets to sell and exits." << endl << osunlock; 
}
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Critical Section
A critical section is a section of code that should be executed by only one thread 
at a time.

static void sellTickets(size_t id, size_t& remainingTickets) { 
    while (true) {

if (remainingTickets == 0) break; 
size_t myTicket = remainingTickets;
remainingTickets--; 

        sleep_for(500); // simulate "selling a ticket" 
        cout << oslock << "Thread #" << id << " sold a ticket (" 
             << myTicket - 1 << " remain)." << endl << osunlock; 
    } 
    cout << oslock << "Thread #" << id 
    << " sees no remaining tickets to sell and exits." << endl << osunlock; 
}
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Critical Section
A critical section is a section of code that should be executed by only one thread 
at a time.

static void sellTickets(size_t id, size_t& remainingTickets) { 
    while (true) {

🚦🚦🚦 // only 1 thread can proceed at a time
if (remainingTickets == 0) break; 
size_t myTicket = remainingTickets;
remainingTickets--; 
// once thread passes here, another can go

        sleep_for(500); // simulate "selling a ticket" 
        cout << oslock << "Thread #" << id << " sold a ticket (" 
             << myTicket - 1 << " remain)." << endl << osunlock; 
    } 
    cout << oslock << "Thread #" << id 
    << " sees no remaining tickets to sell and exits." << endl << osunlock; 
}
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Critical Section
Wait a minute – one benefit of threads is running concurrently.  Doesn’t a 
critical section defeat the point if only one thread can execute one at a time?
• Critical sections can absolutely bottleneck performance – for this reason, we 

want them to be as small as possible.
• Some critical sections (such as here) are unavoidable to ensure correctness; it’s 

not always possible for multiple threads to simultaneously every section of 
code.
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Plan For Today
• Recap: Threads
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .
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Mutexes
A mutex (”mutual exclusion”) is a type of variable meant to be shared across 
threads, and which can be “owned” by only 1 thread at a time.  
If you have a mutex myMutex, call lock on it to take ownership of it:

myMutex.lock();

Call unlock on it when you are the owner and want to give up ownership of it:

myMutex.unlock();

Critically: lock() will block if a thread calls lock and another thread currently 
owns that mutex.  lock() unblocks once the lock is available again.
(A mutex is initially unlocked when created)
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Mutexes
int main(int argc, const char *argv[]) {
    thread ticketAgents[kNumTicketAgents];
    size_t remainingTickets = 250;
    mutex counterLock;
    
    for (size_t i = 0; i < kNumTicketAgents; i++) {
        ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets), 
ref(counterLock));
    }
    ...
}
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Mutexes
Lock the mutex at the start of the critical section to limit only 1 thread at a time 
to execute the critical section.

static void sellTickets(size_t id, size_t& remainingTickets, mutex& 
counterLock) { 
    while (true) {

counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) break; 
size_t myTicket = remainingTickets;
remainingTickets--; 
// once thread passes here, another can go

        sleep_for(500); // simulate "selling a ticket" 
        cout << oslock << "Thread #" << id << " sold a ticket (" 
             << myTicket - 1 << " remain)." << endl << osunlock; 
    } 
    ...
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Mutexes
When a thread calls lock():
• If the lock is unlocked: the thread now owns the lock and continues execution
• If the lock is locked: the thread blocks and waits until the lock is unlocked
• If multiple threads are waiting for a lock: they all wait until it's unlocked, one receives lock 

(not necessarily one waiting longest)
static void sellTickets(size_t id, size_t& remainingTickets, mutex& 
counterLock) { 
    while (true) {

counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) break; 
size_t myTicket = remainingTickets;
remainingTickets--; 
// once thread passes here, another can go

        sleep_for(500); // simulate "selling a ticket" 
        cout << oslock << "Thread #" << id << " sold a ticket (" 
             << myTicket - 1 << " remain)." << endl << osunlock; 
    } 
    ...
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Mutexes
Unlock the mutex at the end of the critical section.
Calling unlock lets another waiting thread (if any) take ownership of the lock.
(“Bridge” that only 1 thread can cross at a time)
static void sellTickets(size_t id, size_t& remainingTickets, mutex& 
counterLock) { 
    while (true) {

counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) break; 
size_t myTicket = remainingTickets;
remainingTickets--; 
counterLock.unlock(); // once thread passes here, another can go

        sleep_for(500); // simulate "selling a ticket" 
        cout << oslock << "Thread #" << id << " sold a ticket (" 
             << myTicket - 1 << " remain)." << endl << osunlock; 
    } 
    ...
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Demo: stalled-ticket-
agents.cc
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Stalled Ticket Agents

What might have caused some ticket agents to stall?

static void sellTickets(size_t id, size_t& remainingTickets, mutex& 
counterLock) { 
    while (true) {
        counterLock.lock();  // only 1 thread can proceed at a time
        if (remainingTickets == 0) break; 
        size_t myTicket = remainingTickets;
        remainingTickets--; 
        counterLock.unlock(); // once thread passes here, another can go
        sleep_for(500); // simulate "selling a ticket" 
        cout << oslock << "Thread #" << id << " sold a ticket (" 
             << myTicket - 1 << " remain)." << endl << osunlock; 
    } 
    ...

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.
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Stalled Ticket Agents

Make sure to trace each thread's possible paths of execution to ensure they 
always give back shared resources like locks.

static void sellTickets(size_t id, size_t& remainingTickets, mutex& 
counterLock) { 
    while (true) {
        counterLock.lock();  // only 1 thread can proceed at a time
        if (remainingTickets == 0) {
            counterLock.unlock(); // must give up lock before exiting
            break; 
        }
        size_t myTicket = remainingTickets;
        remainingTickets--; 
        counterLock.unlock(); // once thread passes here, another can go
        sleep_for(500); // simulate "selling a ticket" 
        ...
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Mutex Uses
Other times you need a mutex:
• When there are multiple threads writing to a variable
• When there is a thread writing and one or more threads reading

Why do you not need a mutex when there are no writers (only readers)?
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Multiple Mutexes
It’s possible to have more than one mutex per program – e.g. to limit access to 
separate and unrelated critical sections.
void func1(int& counter1, 
             mutex& counter1Lock) {
    counter1Lock.lock();
    counter1++;
    counter1Lock.unlock();
}

void func2(int& counter2, 
             mutex& counter2Lock) {
    counter2Lock.lock();
    counter2--;
    counter2Lock.unlock();
}

int main() {
    int counter1 = 0;
    int counter2 = 0;
    mutex counter1Lock;
    mutex counter2Lock;
    thread t1(thread1, ref(counter1), ref(counter1Lock));
    thread t2(thread2, ref(counter2), ref(counter2Lock));
    ... // make more threads that also call these functions
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Multiple Mutexes
It’s possible to have more than one mutex per program – e.g. to limit access to 
separate and unrelated critical sections.
void func1(int& counter1, 
             mutex& counter1Lock) {
    counter1Lock.lock();
    counter1++;
    counter1Lock.unlock();
}

void func2(int& counter2, 
             mutex& counter2Lock) {
    counter2Lock.lock();
    counter2--;
    counter2Lock.unlock();
}

int main() {
    int counter1 = 0;
    int counter2 = 0;
    mutex counter1Lock;
    mutex counter2Lock;
    thread t1(thread1, ref(counter1), ref(counter1Lock));
    thread t2(thread2, ref(counter2), ref(counter2Lock));
 ... // make more threads that also call these functions

Ok for a thread to modify counter1 and  
another thread to modify counter2 
concurrently, but not ok for two threads to both 
modify counter1, or both modify counter2.
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Multiple Mutexes
It’s possible to have more than one mutex per program – e.g. to limit access to 
separate and unrelated critical sections.
void func1(int& counter1, 
             mutex& counter1Lock) {
    counter1Lock.lock();
    counter1++;
    counter1Lock.unlock();
}

void func2(int& counter2, 
             mutex& counter2Lock) {
    counter2Lock.lock();
    counter2--;
    counter2Lock.unlock();
}

int main() {
    int counter1 = 0;
    int counter2 = 0;
    mutex counter1Lock;
    mutex counter2Lock;
    thread t1(thread1, ref(counter1), ref(counter1Lock));
    thread t2(thread2, ref(counter2), ref(counter2Lock));
 ... // make more threads that also call these functions

Rule of thumb: we usually create a mutex 
for each single variable or critical section 
that we must limit thread access to.
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Mutexes Summary
A mutex (”mutual exclusion”) is a type of variable meant to be shared across 
threads, and which can be owned by only 1 thread at a time.
• lets us enforce this pattern of only 1 thread having access to something.
• Also known as a lock (there are other types of locks as well)
• A way to add a constraint to your program: “only one thread may access or 

execute this at a time”.
• You make a mutex for each distinct thing you need to limit access to. 
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Plan For Today
• Recap: threads and overselling tickets
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .
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Deadlock
Deadlock occurs when multiple threads are all blocked, waiting on a resource 
owned by one of the other threads.  None can make progress!  Example:

E.g. if thread A executes 1 line, then thread B executes 1 line, deadlock!
One prevention technique - prevent circularities: all threads request resources in 
the same order (e.g., always lock mutex1 before mutex2.)
Another – limit number of threads competing for a shared resource

Thread A Thread B
mutex1.lock();
mutex2.lock();
...

mutex2.lock();
mutex1.lock();
...
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Plan For Today
• Recap: threads and overselling tickets
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .
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Deadlock Example: Dining 
Philosophers Simulation

• Five philosophers sit around a circular table, eating spaghetti
• There is one fork for each of them
• Each philosopher thinks, then eats, and repeats this three times for their 

three daily meals.
• To eat, a philosopher must grab the fork on their left and the fork on their 

right. Then they chow on spaghetti to nourish their big, philosophizing brain.
• When they're full, they put down the forks in the same order they picked them 

up and return to thinking for a while.
• To think, a philosopher keeps to themselves for some amount of 

time. Sometimes they think for a long time, and sometimes they barely think 
at all.
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Dining Philosophers

https://commons.wikimedia.org/wiki/File:An_illustration_of_the_dining_philosophers_problem.png
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Dining Philosophers
Goal: we must encode resource constraints into our program.
Example: for a given fork, how many philosophers can use it at a time?  One.
How can we encode this into our program? Make a mutex for each fork.
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Dining Philosophers
static void philosopher(size_t id, mutex& left, mutex& 
right) { ... } 

int main(int argc, const char *argv[]) { 
mutex forks[kNumForks]; 
thread philosophers[kNumPhilosophers]; 
for (size_t i = 0; i < kNumPhilosophers; i++) {

philosophers[i] = thread(philosopher, i, 
ref(forks[i]), 
ref(forks[(i + 1) % kNumPhilosophers]));

} 
for (thread& p: philosophers) p.join(); 
return 0; 

}
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Dining Philosophers

static void philosopher(size_t id, mutex& left, mutex& 
right) { 

for (size_t i = 0; i < kNumMeals; i++) { 
think(id); 
eat(id, left, right); 

} 
}

A philosopher thinks and eats, and repeats this 3 times.
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Dining Philosophers

static void think(size_t id) { 
cout << oslock << id << " starts thinking."

<< endl << osunlock; 
sleep_for(getThinkTime()); 
cout << oslock << id << " all done thinking. "

<< endl << osunlock; 
}

think is modeled as sleeping the thread for some amount of time.
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Dining Philosophers

static void eat(size_t id, mutex& left, mutex& right) {
left.lock(); 
right.lock(); 
cout << oslock << id << " starts eating om nom nom 

nom." << endl << osunlock; 
sleep_for(getEatTime()); 
cout << oslock << id << " all done eating." << endl

<< osunlock; 
left.unlock(); 
right.unlock(); 

}

eat is modeled as grabbing the two forks, sleeping for some amount of time, 
and putting the forks down.

Spoiler: there is a race condition here that 
leads to deadlock – deadlock occurs when 
multiple threads are all blocked, waiting on a 
resource owned by one of the other blocked 
threads.  When could this happen?
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Food For Thought
What if: all philosophers grab their left fork and then go off the CPU?
• Deadlock!  All philosophers will wait on their right fork, which will never 

become available
• Testing our hypothesis: insert a sleep_for call in between grabbing the two 

forks
• We should be able to insert a sleep_for call anywhere in a thread routine and 

have no concurrency issues.  Let’s try it!

dining-philosophers-with-deadlock.cc
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Food For Thought
What if: all philosophers grab their left fork and then go off the CPU?
• Deadlock!  All philosophers will wait on their right fork, which will never 

become available
• Testing our hypothesis: insert a sleep_for call in between grabbing the two 

forks
• We should be able to insert a sleep_for call anywhere in a thread routine and 

have no concurrency issues.  Let’s try it!
• We (incorrectly) assumed that at least one philosopher is always able to pick 

up both of their forks.  How can we fix this?

dining-philosophers-with-deadlock.cc
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Race Conditions and Deadlock
In multithreaded programs, we need to ensure that:

there are never race conditions
• we can generally solve race conditions with mutexes. Use them to mark the 

boundaries of critical sections to limit them to 1 thread at a time.

there's zero chance of deadlock (otherwise some or all threads are starved)
• we can solve deadlock by requesting resources in the same order and by 

limiting the number of threads competing for a shared resource.
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Recap
• Recap: Threads
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

Next time: condition variables

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

Lecture 13 takeaway: A mutex 
(“lock”) can help us limit critical 
sections to 1 thread at a time.  A 
thread can lock a mutex to take 
ownership of it, and unlock it to 
give it back.  Locking a locked 
mutex will block the thread until 
the mutex is available.  We must 
watch out for race conditions!


