
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 13
Race Conditions and Locks

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 5.2-5.4

and Section 6.5

2

CS111 Topic 3: Multithreading, Part 1

Multithreading
Introduction

Race
conditions and

locks

Locks and
Condition
Variables

Multithreading
Patterns

Last lecture This Lecture Lecture 14 Lecture 15

assign4: implement several multithreaded programs while eliminating race conditions!

Topic 3: Multithreading - How can we have concurrency within a single
process? How does the operating system support this?

3

Learning Goals
• Understand how to identify critical sections and fix race conditions/deadlock
• Learn how locks can help us limit access to shared resources

4

Plan For Today
• Recap: Threads
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

5

Plan For Today
• Recap: Threads
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

6

From Processes to Threads
We can have concurrency within a single process using threads: independent
execution sequences within a single process.
• Threads let us run multiple functions in our program concurrently (e.g.

parallelize computation)
• Each thread operates within the same process, so they share a virtual address

space (!) (globals, heap, pass by reference, etc.)

7

C++ Thread
A thread object can be spawned to run the specified function with the given
arguments.

thread myThread(myFunc, arg1, arg2, ...);

• myFunc: the function the thread should execute asynchronously
• args: a list of arguments (any length, or none) to pass to the function
• myFunc’s function's return value is ignored (use pass by reference instead)
• Once initialized with this constructor, the thread may execute at any time!

8

C++ Thread
To wait on a thread to finish, use the .join() method:

thread myThread(myFunc, arg1, arg2);
...
// Wait for thread to finish (blocks)
myThread.join();

For multiple threads, we must wait on a specific thread one at a time:

thread friends[5];
...
for (int i = 0; i < 5; i++) {

friends[i].join();
}

9

Race Conditions
• Like with processes, threads can execute in unpredictable orderings.
• A race condition is an unpredictable ordering of events where some orderings

may cause undesired behavior.
• An example where race conditions can occur is

with operator<<. e.g. cout statements could get interleaved!
• To avoid this, use oslock and osunlock (custom CS111 functions - #include

"ostreamlock.h") around streams. They ensure at most one thread has
permission to write into a stream at any one time.

cout << oslock << "Hello, world!" << endl << osunlock;

10

Parallelizing Tasks
Simulation: let each thread help sell the 250 tickets until none are left.

const size_t kNumTicketAgents = 10;
int main(int argc, const char *argv[]) {

thread ticketAgents[kNumTicketAgents];
size_t remainingTickets = 250;

for (size_t i = 0; i < kNumTicketAgents; i++) {
ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets));

}

for (size_t i = 0; i < kNumTicketAgents; i++) {
ticketAgents[i].join();

}
cout << "Ticket selling done!" << endl;
return 0;

}

11

Race Condition: Overselling Tickets
There is a race condition here! Threads could interrupt each other in between
checking for remaining tickets and selling them.

• If thread A sees tickets remaining and commits to selling a ticket, another
thread B could come in and sell that same ticket before thread A does.
• This can happen because this portion of code isn’t atomic.

static void sellTickets(size_t id, size_t& remainingTickets) {
 while (remainingTickets > 0) {
 sleep_for(500); // simulate "selling a ticket"
 remainingTickets--;
 ...
 }
 ...
}

12

Race Condition: Overselling Tickets
If thread A sees tickets remaining and commits to selling a ticket, another thread
B could come in and sell that same ticket before thread A does.

• Atomic means it happens in its entirety without interruption. Cannot be
observed in the middle.
• We want a thread to do the entire check-and-sell operation uninterrupted by

other threads executing this region.

static void sellTickets(size_t id, size_t& remainingTickets) {
 while (remainingTickets > 0) {
 sleep_for(500); // simulate "selling a ticket"
 remainingTickets--;
 ...
 }
 ...
}

13

It would be nice if we could
allow only one thread at a
time to execute a region of

code.

14

Plan For Today
• Recap: Threads
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

15

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

What should we make a critical section? Key: keep them as small as possible to
protect performance.

static void sellTickets(size_t id, size_t& remainingTickets) {
 while (remainingTickets > 0) {
 sleep_for(500); // simulate "selling a ticket"
 remainingTickets--;
 cout << oslock << "Thread #" << id << " sold a ticket ("
 << remainingTickets << " remain)." << endl << osunlock;
 }
 cout << oslock << "Thread #" << id
 << " sees no remaining tickets to sell and exits." << endl << osunlock;
}

16

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

What should we make a critical section? Key: keep them as small as possible to
protect performance.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (remainingTickets > 0) {

sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
 }
 cout << oslock << "Thread #" << id
 << " sees no remaining tickets to sell and exits." << endl << osunlock;
}

17

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

What should we make a critical section? Key: keep them as small as possible to
protect performance.

static void sellTickets(size_t id, size_t& remainingTickets) {
 while (true) {

if (remainingTickets == 0) break;
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
 }
 cout << oslock << "Thread #" << id
 << " sees no remaining tickets to sell and exits." << endl << osunlock;
}

18

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

static void sellTickets(size_t id, size_t& remainingTickets) {
 while (true) {

if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;

 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket ("
 << myTicket - 1 << " remain)." << endl << osunlock;
 }
 cout << oslock << "Thread #" << id
 << " sees no remaining tickets to sell and exits." << endl << osunlock;
}

19

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

static void sellTickets(size_t id, size_t& remainingTickets) {
 while (true) {

🚦🚦🚦 // only 1 thread can proceed at a time
if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
// once thread passes here, another can go

 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket ("
 << myTicket - 1 << " remain)." << endl << osunlock;
 }
 cout << oslock << "Thread #" << id
 << " sees no remaining tickets to sell and exits." << endl << osunlock;
}

20

Critical Section
Wait a minute – one benefit of threads is running concurrently. Doesn’t a
critical section defeat the point if only one thread can execute one at a time?
• Critical sections can absolutely bottleneck performance – for this reason, we

want them to be as small as possible.
• Some critical sections (such as here) are unavoidable to ensure correctness; it’s

not always possible for multiple threads to simultaneously every section of
code.

21

Plan For Today
• Recap: Threads
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

22

Mutexes
A mutex (”mutual exclusion”) is a type of variable meant to be shared across
threads, and which can be “owned” by only 1 thread at a time.
If you have a mutex myMutex, call lock on it to take ownership of it:

myMutex.lock();

Call unlock on it when you are the owner and want to give up ownership of it:

myMutex.unlock();

Critically: lock() will block if a thread calls lock and another thread currently
owns that mutex. lock() unblocks once the lock is available again.
(A mutex is initially unlocked when created)

23

Mutexes
int main(int argc, const char *argv[]) {
 thread ticketAgents[kNumTicketAgents];
 size_t remainingTickets = 250;
 mutex counterLock;

 for (size_t i = 0; i < kNumTicketAgents; i++) {
 ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets),
ref(counterLock));
 }
 ...
}

24

Mutexes
Lock the mutex at the start of the critical section to limit only 1 thread at a time
to execute the critical section.

static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {
 while (true) {

counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
// once thread passes here, another can go

 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket ("
 << myTicket - 1 << " remain)." << endl << osunlock;
 }
 ...

25

Mutexes
When a thread calls lock():
• If the lock is unlocked: the thread now owns the lock and continues execution
• If the lock is locked: the thread blocks and waits until the lock is unlocked
• If multiple threads are waiting for a lock: they all wait until it's unlocked, one receives lock

(not necessarily one waiting longest)
static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {
 while (true) {

counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
// once thread passes here, another can go

 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket ("
 << myTicket - 1 << " remain)." << endl << osunlock;
 }
 ...

26

Mutexes
Unlock the mutex at the end of the critical section.
Calling unlock lets another waiting thread (if any) take ownership of the lock.
(“Bridge” that only 1 thread can cross at a time)
static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {
 while (true) {

counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
counterLock.unlock(); // once thread passes here, another can go

 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket ("
 << myTicket - 1 << " remain)." << endl << osunlock;
 }
 ...

27

Demo: stalled-ticket-
agents.cc

28

Stalled Ticket Agents

What might have caused some ticket agents to stall?

static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {
 while (true) {
 counterLock.lock(); // only 1 thread can proceed at a time
 if (remainingTickets == 0) break;
 size_t myTicket = remainingTickets;
 remainingTickets--;
 counterLock.unlock(); // once thread passes here, another can go
 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket ("
 << myTicket - 1 << " remain)." << endl << osunlock;
 }
 ...

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

29

30

Stalled Ticket Agents

Make sure to trace each thread's possible paths of execution to ensure they
always give back shared resources like locks.

static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {
 while (true) {
 counterLock.lock(); // only 1 thread can proceed at a time
 if (remainingTickets == 0) {
 counterLock.unlock(); // must give up lock before exiting
 break;
 }
 size_t myTicket = remainingTickets;
 remainingTickets--;
 counterLock.unlock(); // once thread passes here, another can go
 sleep_for(500); // simulate "selling a ticket"
 ...

31

Mutex Uses
Other times you need a mutex:
• When there are multiple threads writing to a variable
• When there is a thread writing and one or more threads reading

Why do you not need a mutex when there are no writers (only readers)?

32

Multiple Mutexes
It’s possible to have more than one mutex per program – e.g. to limit access to
separate and unrelated critical sections.
void func1(int& counter1,
 mutex& counter1Lock) {
 counter1Lock.lock();
 counter1++;
 counter1Lock.unlock();
}

void func2(int& counter2,
 mutex& counter2Lock) {
 counter2Lock.lock();
 counter2--;
 counter2Lock.unlock();
}

int main() {
 int counter1 = 0;
 int counter2 = 0;
 mutex counter1Lock;
 mutex counter2Lock;
 thread t1(thread1, ref(counter1), ref(counter1Lock));
 thread t2(thread2, ref(counter2), ref(counter2Lock));
 ... // make more threads that also call these functions

33

Multiple Mutexes
It’s possible to have more than one mutex per program – e.g. to limit access to
separate and unrelated critical sections.
void func1(int& counter1,
 mutex& counter1Lock) {
 counter1Lock.lock();
 counter1++;
 counter1Lock.unlock();
}

void func2(int& counter2,
 mutex& counter2Lock) {
 counter2Lock.lock();
 counter2--;
 counter2Lock.unlock();
}

int main() {
 int counter1 = 0;
 int counter2 = 0;
 mutex counter1Lock;
 mutex counter2Lock;
 thread t1(thread1, ref(counter1), ref(counter1Lock));
 thread t2(thread2, ref(counter2), ref(counter2Lock));
 ... // make more threads that also call these functions

Ok for a thread to modify counter1 and
another thread to modify counter2
concurrently, but not ok for two threads to both
modify counter1, or both modify counter2.

34

Multiple Mutexes
It’s possible to have more than one mutex per program – e.g. to limit access to
separate and unrelated critical sections.
void func1(int& counter1,
 mutex& counter1Lock) {
 counter1Lock.lock();
 counter1++;
 counter1Lock.unlock();
}

void func2(int& counter2,
 mutex& counter2Lock) {
 counter2Lock.lock();
 counter2--;
 counter2Lock.unlock();
}

int main() {
 int counter1 = 0;
 int counter2 = 0;
 mutex counter1Lock;
 mutex counter2Lock;
 thread t1(thread1, ref(counter1), ref(counter1Lock));
 thread t2(thread2, ref(counter2), ref(counter2Lock));
 ... // make more threads that also call these functions

Rule of thumb: we usually create a mutex
for each single variable or critical section
that we must limit thread access to.

35

Mutexes Summary
A mutex (”mutual exclusion”) is a type of variable meant to be shared across
threads, and which can be owned by only 1 thread at a time.
• lets us enforce this pattern of only 1 thread having access to something.
• Also known as a lock (there are other types of locks as well)
• A way to add a constraint to your program: “only one thread may access or

execute this at a time”.
• You make a mutex for each distinct thing you need to limit access to.

36

Plan For Today
• Recap: threads and overselling tickets
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

37

Deadlock
Deadlock occurs when multiple threads are all blocked, waiting on a resource
owned by one of the other threads. None can make progress! Example:

E.g. if thread A executes 1 line, then thread B executes 1 line, deadlock!
One prevention technique - prevent circularities: all threads request resources in
the same order (e.g., always lock mutex1 before mutex2.)
Another – limit number of threads competing for a shared resource

Thread A Thread B
mutex1.lock();
mutex2.lock();
...

mutex2.lock();
mutex1.lock();
...

38

Plan For Today
• Recap: threads and overselling tickets
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

39

Deadlock Example: Dining
Philosophers Simulation

• Five philosophers sit around a circular table, eating spaghetti
• There is one fork for each of them
• Each philosopher thinks, then eats, and repeats this three times for their

three daily meals.
• To eat, a philosopher must grab the fork on their left and the fork on their

right. Then they chow on spaghetti to nourish their big, philosophizing brain.
• When they're full, they put down the forks in the same order they picked them

up and return to thinking for a while.
• To think, a philosopher keeps to themselves for some amount of

time. Sometimes they think for a long time, and sometimes they barely think
at all.

40

Dining Philosophers

https://commons.wikimedia.org/wiki/File:An_illustration_of_the_dining_philosophers_problem.png

41

Dining Philosophers
Goal: we must encode resource constraints into our program.
Example: for a given fork, how many philosophers can use it at a time? One.
How can we encode this into our program? Make a mutex for each fork.

42

Dining Philosophers
static void philosopher(size_t id, mutex& left, mutex&
right) { ... }

int main(int argc, const char *argv[]) {
mutex forks[kNumForks];
thread philosophers[kNumPhilosophers];
for (size_t i = 0; i < kNumPhilosophers; i++) {

philosophers[i] = thread(philosopher, i,
ref(forks[i]),
ref(forks[(i + 1) % kNumPhilosophers]));

}
for (thread& p: philosophers) p.join();
return 0;

}

43

Dining Philosophers

static void philosopher(size_t id, mutex& left, mutex&
right) {

for (size_t i = 0; i < kNumMeals; i++) {
think(id);
eat(id, left, right);

}
}

A philosopher thinks and eats, and repeats this 3 times.

44

Dining Philosophers

static void think(size_t id) {
cout << oslock << id << " starts thinking."

<< endl << osunlock;
sleep_for(getThinkTime());
cout << oslock << id << " all done thinking. "

<< endl << osunlock;
}

think is modeled as sleeping the thread for some amount of time.

45

Dining Philosophers

static void eat(size_t id, mutex& left, mutex& right) {
left.lock();
right.lock();
cout << oslock << id << " starts eating om nom nom

nom." << endl << osunlock;
sleep_for(getEatTime());
cout << oslock << id << " all done eating." << endl

<< osunlock;
left.unlock();
right.unlock();

}

eat is modeled as grabbing the two forks, sleeping for some amount of time,
and putting the forks down.

Spoiler: there is a race condition here that
leads to deadlock – deadlock occurs when
multiple threads are all blocked, waiting on a
resource owned by one of the other blocked
threads. When could this happen?

46

Food For Thought
What if: all philosophers grab their left fork and then go off the CPU?
• Deadlock! All philosophers will wait on their right fork, which will never

become available
• Testing our hypothesis: insert a sleep_for call in between grabbing the two

forks
• We should be able to insert a sleep_for call anywhere in a thread routine and

have no concurrency issues. Let’s try it!

dining-philosophers-with-deadlock.cc

47

Food For Thought
What if: all philosophers grab their left fork and then go off the CPU?
• Deadlock! All philosophers will wait on their right fork, which will never

become available
• Testing our hypothesis: insert a sleep_for call in between grabbing the two

forks
• We should be able to insert a sleep_for call anywhere in a thread routine and

have no concurrency issues. Let’s try it!
• We (incorrectly) assumed that at least one philosopher is always able to pick

up both of their forks. How can we fix this?

dining-philosophers-with-deadlock.cc

48

Race Conditions and Deadlock
In multithreaded programs, we need to ensure that:

there are never race conditions
• we can generally solve race conditions with mutexes. Use them to mark the

boundaries of critical sections to limit them to 1 thread at a time.

there's zero chance of deadlock (otherwise some or all threads are starved)
• we can solve deadlock by requesting resources in the same order and by

limiting the number of threads competing for a shared resource.

49

Recap
• Recap: Threads
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

Next time: condition variables

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

Lecture 13 takeaway: A mutex
(“lock”) can help us limit critical
sections to 1 thread at a time. A
thread can lock a mutex to take
ownership of it, and unlock it to
give it back. Locking a locked
mutex will block the thread until
the mutex is available. We must
watch out for race conditions!

