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CS111 Topic 3: Multithreading, Part 1

Multithreading 
Introduction

Race conditions 
and locks

Condition 
Variables

Trust, Race 
Conditions and 
Multithreading 

Patterns

The Monitor 
Pattern

Lecture 12 Lecture 13 Lecture 14 This Lecture

assign4: ethics exploration + implementing 2 monitor pattern classes for 2 
multithreaded programs.

Topic 3: Multithreading - How can we have concurrency within a single 
process? How does the operating system support this?

Lecture 15



3

Plan For Today
• Monitor pattern
• Example: Bridge Crossing
• Unique Locks
• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect16 .
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Plan For Today
• Monitor pattern
• Example: Bridge Crossing
• Unique Locks
• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect16 .
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Monitor Design Pattern
The monitor pattern is a design pattern for writing multithreaded code, where 
we associate a single lock with a collection of related variables, e.g. a class.
• For a multithreaded program, we can define a class that encapsulates the key 

multithreading logic and make an instance of it in our program.
• This class will have 1 mutex instance variable, and in all its methods we’ll lock 

and unlock it as needed when accessing our shared state, so multiple threads 
can call the methods
• We can add any other state or condition variables we need as well – but the 

key idea is there is one mutex protecting access to all shared state, and which 
is locked/unlocked in the class methods that use the shared state.
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Plan For Today
• Monitor pattern
• Example: Bridge Crossing
• Unique Locks
• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect16 .
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Bridge Crossing

Let’s write a program that simulates cars crossing a one-lane bridge.
• We will have each car represented by a thread, and they must coordinate as 

though they all need to cross the bridge.
• A car can be going either east or west
• All cars on bridge must be travelling in the same direction
• Any number of cars can be on the bridge at once
• A car from the other direction can only go once the coast is clear

One-Lane Bridge
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Bridge Crossing

static void cross_bridge_east(size_t id) {
approach_bridge(); // sleep
// TODO: wait until no cars going westbound
driveAcross(); // sleep
// now we have crossed

}

static void cross_bridge_west(size_t id) {
approach_bridge(); // sleep
// TODO: wait until no cars going eastbound
driveAcross(); // sleep
// now we have crossed

}

A car thread would execute one of these two functions:
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Arriving Eastbound
Key task: a thread needs to wait for it to be clear to cross.

E.g. car going eastbound:
• If other cars are already crossing eastbound, they can go
• If other cars are already crossing westbound, we must wait

“Waiting for an event to happen” -> condition variable!
For going east, we are waiting for the event ”no more cars are going 
westbound”.
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State
What variables do we need to 
create to share across threads?
• 1 mutex to lock shared state
• Condition variable (for waiting to 

go east)
• ?? (for going east)
• Condition variable (for waiting to 

go west)
• ?? (for going west)

static void cross_bridge_east(size_t id) {
    approach_bridge(); // sleep 
    // TODO: wait until no cars going westbound        
    driveAcross(); // sleep 
    // now we have crossed
}

static void cross_bridge_west(size_t id) {
    approach_bridge(); // sleep 
    // TODO: wait until no cars going eastbound
    driveAcross(); // sleep 
    // now we have crossed
}

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.
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State
What variables do we need to 
create to share across threads?
• 1 mutex to lock shared state
• Condition variable (for waiting to 

go east)
• Counter of cars crossing east
• Condition variable (for waiting to

go west)
• Counter of cars crossing west

static void cross_bridge_east(size_t id) {
    approach_bridge(); // sleep 
    // TODO: wait until no cars going westbound        
    driveAcross(); // sleep 
    // now we have crossed
}

static void cross_bridge_west(size_t id) {
    approach_bridge(); // sleep 
    // TODO: wait until no cars going eastbound
    driveAcross(); // sleep 
    // now we have crossed
}
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Live Coding: Bridge 
Crossing



14

Plan For Today
• Monitor pattern
• Example: Bridge Crossing
• Unique Locks
• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect16 .
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Unique Locks
• It is common to acquire a lock and hold onto it until the end of some scope 

(e.g. end of function, end of loop, etc.).
• There is a convenient variable type called unique_lock that when created can 

automatically lock a mutex, and when destroyed (e.g. when it goes out of 
scope) can automatically unlock a mutex.
• Particularly useful if you have many paths to exit a function and you must 

unlock in all paths.
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leave_eastbound
We lock at the beginning of this function and unlock at the end.

void Bridge::leave_eastbound(size_t id) {
bridge_lock.lock();
n_crossing_eastbound--;
if (n_crossing_eastbound == 0) {

none_crossing_eastbound.notify_all();
}
print(id, "crossed", true);
bridge_lock.unlock();

}
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leave_eastbound
We lock at the beginning of this function and unlock at the end.

void Bridge::leave_eastbound(size_t id) {
unique_lock<mutex> lock(bridge_lock);
n_crossing_eastbound--;
if (n_crossing_eastbound == 0) {

none_crossing_eastbound.notify_all();
}
print(id, "crossed", true);

}

Auto-locks permitsLock here 
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leave_eastbound
We lock at the beginning of this function and unlock at the end.

void Bridge::leave_eastbound(size_t id) {
unique_lock<mutex> lock(bridge_lock);
n_crossing_eastbound--;
if (n_crossing_eastbound == 0) {

none_crossing_eastbound.notify_all();
}
print(id, "crossed", true);

}

Auto-unlocks permitsLock 
here (goes out of scope)
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arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {

bridge_lock.lock();
print(id, "arrived", true);
while (n_crossing_westbound > 0) {

none_crossing_westbound.wait(bridge_lock);
}
n_crossing_eastbound++;
print(id, "crossing", true);
bridge_lock.unlock();

}
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arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {

unique_lock<mutex> lock(bridge_lock);
print(id, "arrived", true);
while (n_crossing_westbound > 0) {

none_crossing_westbound.wait(lock);
}
n_crossing_eastbound++;
print(id, "crossing", true);

}

Auto-locks permitsLock here 
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arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {

unique_lock<mutex> lock(bridge_lock);
print(id, "arrived", true);
while (n_crossing_westbound > 0) {

none_crossing_westbound.wait(lock);
}
n_crossing_eastbound++;
print(id, "crossing", true);

}

Use it with CV instead of original lock (it has 
wrapper methods for manually locking/unlocking!)
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arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {

unique_lock<mutex> lock(bridge_lock);
print(id, "arrived", true);
while (n_crossing_westbound > 0) {

none_crossing_westbound.wait(lock);
}
n_crossing_eastbound++;
print(id, "crossing", true);

}

Auto-unlocks permitsLock 
here (goes out of scope)
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Plan For Today
• Monitor pattern
• Example: Bridge Crossing
• Unique Locks
• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect16 .
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Assign4
Assign4: ethics exploration + implementing 2 monitor pattern classes for 2 
multithreaded programs.
• Data structures can be used to store condition variables or state
• Structs also helpful to bundle state together and make multiple instances of 

structs
• Note: when you add elements to C++ data structures (e.g. vector, queue, set, 

map) it inserts copies.
• condition variables cannot be copied.  E.g. cannot create a condition variable 

and push onto vector. 
• For two above bullets: consider how pointers can help!
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Recap
• Monitor pattern
• Example: Bridge Crossing
• Unique Locks
• assign4

Next time: how does the OS run and 
switch between threads?

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

Lecture 16 takeaway: The 
monitor pattern combines 
procedures and state into a 
class for easier management 
of synchronization.  Then 
threads can call its thread-
safe methods!


