
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 16
The Monitor Pattern

2

CS111 Topic 3: Multithreading, Part 1

Multithreading
Introduction

Race conditions
and locks

Condition
Variables

Trust, Race
Conditions and
Multithreading

Patterns

The Monitor
Pattern

Lecture 12 Lecture 13 Lecture 14 This Lecture

assign4: ethics exploration + implementing 2 monitor pattern classes for 2
multithreaded programs.

Topic 3: Multithreading - How can we have concurrency within a single
process? How does the operating system support this?

Lecture 15

3

Plan For Today
• Monitor pattern
• Example: Bridge Crossing
• Unique Locks
• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

4

Plan For Today
• Monitor pattern
• Example: Bridge Crossing
• Unique Locks
• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

5

Monitor Design Pattern
The monitor pattern is a design pattern for writing multithreaded code, where
we associate a single lock with a collection of related variables, e.g. a class.
• For a multithreaded program, we can define a class that encapsulates the key

multithreading logic and make an instance of it in our program.
• This class will have 1 mutex instance variable, and in all its methods we’ll lock

and unlock it as needed when accessing our shared state, so multiple threads
can call the methods
• We can add any other state or condition variables we need as well – but the

key idea is there is one mutex protecting access to all shared state, and which
is locked/unlocked in the class methods that use the shared state.

6

Plan For Today
• Monitor pattern
• Example: Bridge Crossing
• Unique Locks
• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

7

Bridge Crossing

Let’s write a program that simulates cars crossing a one-lane bridge.
• We will have each car represented by a thread, and they must coordinate as

though they all need to cross the bridge.
• A car can be going either east or west
• All cars on bridge must be travelling in the same direction
• Any number of cars can be on the bridge at once
• A car from the other direction can only go once the coast is clear

One-Lane Bridge

8

Bridge Crossing

static void cross_bridge_east(size_t id) {
approach_bridge(); // sleep
// TODO: wait until no cars going westbound
driveAcross(); // sleep
// now we have crossed

}

static void cross_bridge_west(size_t id) {
approach_bridge(); // sleep
// TODO: wait until no cars going eastbound
driveAcross(); // sleep
// now we have crossed

}

A car thread would execute one of these two functions:

9

Arriving Eastbound
Key task: a thread needs to wait for it to be clear to cross.

E.g. car going eastbound:
• If other cars are already crossing eastbound, they can go
• If other cars are already crossing westbound, we must wait

“Waiting for an event to happen” -> condition variable!
For going east, we are waiting for the event ”no more cars are going
westbound”.

10

State
What variables do we need to
create to share across threads?
• 1 mutex to lock shared state
• Condition variable (for waiting to

go east)
• ?? (for going east)
• Condition variable (for waiting to

go west)
• ?? (for going west)

static void cross_bridge_east(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going westbound
 driveAcross(); // sleep
 // now we have crossed
}

static void cross_bridge_west(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going eastbound
 driveAcross(); // sleep
 // now we have crossed
}

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

11

12

State
What variables do we need to
create to share across threads?
• 1 mutex to lock shared state
• Condition variable (for waiting to

go east)
• Counter of cars crossing east
• Condition variable (for waiting to

go west)
• Counter of cars crossing west

static void cross_bridge_east(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going westbound
 driveAcross(); // sleep
 // now we have crossed
}

static void cross_bridge_west(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going eastbound
 driveAcross(); // sleep
 // now we have crossed
}

13

Live Coding: Bridge
Crossing

14

Plan For Today
• Monitor pattern
• Example: Bridge Crossing
• Unique Locks
• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

15

Unique Locks
• It is common to acquire a lock and hold onto it until the end of some scope

(e.g. end of function, end of loop, etc.).
• There is a convenient variable type called unique_lock that when created can

automatically lock a mutex, and when destroyed (e.g. when it goes out of
scope) can automatically unlock a mutex.
• Particularly useful if you have many paths to exit a function and you must

unlock in all paths.

16

leave_eastbound
We lock at the beginning of this function and unlock at the end.

void Bridge::leave_eastbound(size_t id) {
bridge_lock.lock();
n_crossing_eastbound--;
if (n_crossing_eastbound == 0) {

none_crossing_eastbound.notify_all();
}
print(id, "crossed", true);
bridge_lock.unlock();

}

17

leave_eastbound
We lock at the beginning of this function and unlock at the end.

void Bridge::leave_eastbound(size_t id) {
unique_lock<mutex> lock(bridge_lock);
n_crossing_eastbound--;
if (n_crossing_eastbound == 0) {

none_crossing_eastbound.notify_all();
}
print(id, "crossed", true);

}

Auto-locks permitsLock here

18

leave_eastbound
We lock at the beginning of this function and unlock at the end.

void Bridge::leave_eastbound(size_t id) {
unique_lock<mutex> lock(bridge_lock);
n_crossing_eastbound--;
if (n_crossing_eastbound == 0) {

none_crossing_eastbound.notify_all();
}
print(id, "crossed", true);

}

Auto-unlocks permitsLock
here (goes out of scope)

19

arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {

bridge_lock.lock();
print(id, "arrived", true);
while (n_crossing_westbound > 0) {

none_crossing_westbound.wait(bridge_lock);
}
n_crossing_eastbound++;
print(id, "crossing", true);
bridge_lock.unlock();

}

20

arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {

unique_lock<mutex> lock(bridge_lock);
print(id, "arrived", true);
while (n_crossing_westbound > 0) {

none_crossing_westbound.wait(lock);
}
n_crossing_eastbound++;
print(id, "crossing", true);

}

Auto-locks permitsLock here

21

arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {

unique_lock<mutex> lock(bridge_lock);
print(id, "arrived", true);
while (n_crossing_westbound > 0) {

none_crossing_westbound.wait(lock);
}
n_crossing_eastbound++;
print(id, "crossing", true);

}

Use it with CV instead of original lock (it has
wrapper methods for manually locking/unlocking!)

22

arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {

unique_lock<mutex> lock(bridge_lock);
print(id, "arrived", true);
while (n_crossing_westbound > 0) {

none_crossing_westbound.wait(lock);
}
n_crossing_eastbound++;
print(id, "crossing", true);

}

Auto-unlocks permitsLock
here (goes out of scope)

23

Plan For Today
• Monitor pattern
• Example: Bridge Crossing
• Unique Locks
• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

24

Assign4
Assign4: ethics exploration + implementing 2 monitor pattern classes for 2
multithreaded programs.
• Data structures can be used to store condition variables or state
• Structs also helpful to bundle state together and make multiple instances of

structs
• Note: when you add elements to C++ data structures (e.g. vector, queue, set,

map) it inserts copies.
• condition variables cannot be copied. E.g. cannot create a condition variable

and push onto vector.
• For two above bullets: consider how pointers can help!

25

Recap
• Monitor pattern
• Example: Bridge Crossing
• Unique Locks
• assign4

Next time: how does the OS run and
switch between threads?

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

Lecture 16 takeaway: The
monitor pattern combines
procedures and state into a
class for easier management
of synchronization. Then
threads can call its thread-
safe methods!

