
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 17
Dispatching

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 7 up

through Section 7.2

2

assign4
• Released, consists of 3 parts:

• Caltrain class (monitor pattern)
• Party class (monitor pattern)
• Ethics / trust exploration

• Important: no prior work reuse allowed on assign4

3

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

4

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

Why is answering this question important?
• Shows us what the mechanism looks like for switching between running

threads (today)
• Allows us to see how threads are represented and the fairness challenges for

who gets to run next / for how long (next time)
• Allows us to understand how locks and condition variables are implemented

(next week)

CS111 Topic 3: Multithreading

assign5: implement your own version of thread, mutex and condition_variable!

5

CS111 Topic 3: Multithreading, Part 2

Dispatching Scheduling Scheduling and
Preemption

Implementing
Locks and
Condition
Variables

This Lecture Lecture 18 Lecture 19

assign5: implement your own version of thread, mutex and condition_variable!

Lecture 20

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

6

Learning Goals
• Learn about how the operating system keeps track of threads and processes
• Understand the general mechanisms for switching between threads and when

switches occur

7

Plan For Today
• Overview: Dispatching and Scheduling
• Process and Thread State
• Running a Thread
• Switching to Another Thread

cp -r /afs/ir/class/cs111/lecture-code/lect17 .

8

Plan For Today
• Overview: Dispatching and Scheduling
• Process and Thread State
• Running a Thread
• Switching to Another Thread

cp -r /afs/ir/class/cs111/lecture-code/lect17 .

9

Scheduling And Dispatching
We have learned how user programs can create new processes and spawn
threads. But how does the operating system manage this internally? What
happens when we spawn a new thread or create a new process?

Key questions we will answer:
• How does the operating system track info for threads and processes? (today)
• How does the operating system run a thread and how does it switch between

threads (“dispatching”)? (today)
• Scheduling: How does the operating system decide which thread to run next?

(next time)

10

Plan For Today
• Overview: Dispatching and Scheduling
• Process and Thread State
• Running a Thread
• Switching to Another Thread

cp -r /afs/ir/class/cs111/lecture-code/lect17 .

11

Process and Thread State
Key question #1: How does the operating system track info about threads and
processes?
The OS maintains a (private) process control block (“PCB”) for each process - a
set of relevant information about its execution. Lives as long as the process
does.
• Information about memory used by this process
• File descriptor table
• Info about threads in this process
• Other misc. accounting and info

12

Process and Thread State
Key question #1: How does the operating system track info about threads and
processes?
The OS maintains a (private) process control block (“PCB”) for each process - a
set of relevant information about its execution. Lives as long as the process
does.
• Information about memory used by this process
• File descriptor table
• Info about threads in this process
• Other misc. accounting and info

13

Thread State
• Every process has 1 main thread and can spawn

additional threads.
• Threads are the “unit of execution” – processes

aren’t executed, threads are
• All main info in the PCB (e.g. memory info for

the entire process) is relevant to all threads
• Each thread also has some of its own private info

(e.g. stack location)
• Recall: there is a register called %rsp that points

to the top of the stack (“stack pointer”). Non-
running threads must save their %rsp
somewhere for later.

Process A
Control Block

A2
A1

Threads

A3

thread
state

SP

14

Aside: x86-64 Assembly Refresher
• A register is a 64-bit space inside a processor core.
• Each core has its own set of registers.
• Registers are like “scratch paper” for the processor. Data being calculated or

manipulated is moved to registers first. Operations are performed on
registers.

• Registers also hold parameters and return values for functions.
• Some registers have special responsibilities – e.g. %rsp always stores the

address of the current top of the stack.
• When a thread is being kicked off, it must remember its %rsp value so it knows

where its stack is the next time it runs. (we’ll see how it remembers other
register values later)

15

Plan For Today
• Overview: Dispatching and Scheduling
• Process and Thread State
• Running a Thread
• Switching to Another Thread

cp -r /afs/ir/class/cs111/lecture-code/lect17 .

16

Running a Thread
Key Question #2: How does the operating system run a thread and switch
between threads?
• A processor has 1 or more “cores” - Each core contains a complete CPU

capable of executing a thread
• Typically have more threads than cores, but most may not need to run at any

given point in time (why? They are waiting for something)
• When the OS wants to run a thread, it loads its state (e.g. %rsp and other

registers) into a core, and starts or resumes it
• Problem: once we run a thread, the OS is not running anymore! (e.g. 1 core)

How does it regain control?

17

Regaining Control
There are several ways control can switch back to the OS:
1. “Traps” (events that require OS attention):

1. System calls (like read or waitpid)
2. Errors (illegal instruction, address violation, etc.)
3. Page fault (accessing memory that must be loaded in) – more later…

2. “Interrupts” (events occurring outside current thread):
1. Character typed at keyboard
2. Completion of disk operation
3. Timer – to make sure OS eventually regains control

At this point, OS could then decide to run a different thread.

18

Plan For Today
• Overview: Dispatching and Scheduling
• Process and Thread State
• Running a Thread
• Switching to Another Thread

cp -r /afs/ir/class/cs111/lecture-code/lect17 .

19

Switching Between Threads
When the OS regains control, how does it switch to run another thread?

The dispatcher is OS code that runs on each core that switches between threads
• Not a thread – code that is invoked to perform the dispatching function
• Lets a thread run, then switches to another thread, etc.
• Context switch – changing the thread currently running to another thread. We

must save the current thread state (registers) and load in the new thread state.
• Context switches are funky – like running a function that, as part of its

execution, returns to a completely different function in a completely different
thread!!

20

Demo: context-switch.cc

21

Context Switch
Thread main_thread;
Thread other_thread;

void other_func() {
 cout << "Howdy! I am another thread." << endl;
 context_switch(other_thread, main_thread);
 cout << "We will never reach this line :(" << endl;
}

int main(int argc, char *argv[]) {
 // Initialize other_thread to run other_func
 other_thread = create_thread(other_func);

 cout << "Hello, world! I am the main thread" << endl;
 context_switch(main_thread, other_thread);
 cout << "Cool, I'm back in main()!" << endl;
 return 0;
}

• context_switch is called
from one function, but
returns to another

• The next time we switch
back to the original
thread, it resumes where
it left off.

R0
R1

RN

……

Core

SP

A3 Stack

…

B1 Stack

Hardware
Registers

Process B
Control Block

B1
Threads

SP

Process A
Control Block

A2
A1

Threads

A3

thread
state

thread
state

Context Switching

Context
switch: how do
we switch from
thread A3 to
thread B1?

22

Context Switching

Step 1: push
all registers
besides
stack
register onto
the thread’s
stack. 23

R0
R1

RN

……

Core

SP

…

A3 Stack

…

B1 Stack

Hardware
Registers

Process A
Control Block

A2
A1

Threads

Process B
Control Block

B1
Threads

SP
A3

Saved
Registers

(all but SP)

thread
state

thread
state

Context Switching

Step 2: save
the stack
register into
the thread’s
state space.

24

R0
R1

RN

……

Core

SP

…

A3 Stack

…

B1 Stack

Hardware
Registers

Process A
Control Block

A2
A1

Threads

SP

Process B
Control Block

B1
Threads

SP
A3

thread
state

thread
state

Context Switching

Step 3: load
B1’s saved
stack
register from
its thread
state space.

25

R0
R1

RN

……

Core

SP

…

A3 Stack

…

B1 Stack

Hardware
Registers

Process A
Control Block

A2
A1

Threads

SP

Process B
Control Block

B1
Threads

SP
A3

thread
state

thread
state

Context Switching

Step 4: pop
B1’s other
registers
from its
stack space.

26

R0
R1

RN

……

Core

SP

…

A3 Stack B1 Stack

Hardware
Registers

A2
A1

Threads

SP

B1
Threads

A3

…

thread
state

thread
state

Process A
Control Block

Process B
Control Block

27

Context Switching
A context switch means changing the thread currently running to another
thread. We must save the current thread state and load in the new thread state.
1. Push all registers besides stack onto current thread’s stack
2. Save the current stack register (rsp) into the thread’s state space
3. Load the other thread’s saved stack register from its state space into rsp
4. Pop registers off the other thread’s stack

Super funky: we are calling a function from one
thread’s stack and execution and returning
from it in another thread’s stack and execution!

28

Context Switch
Thread main_thread;
Thread other_thread;

void other_func() {
 cout << "Howdy! I am another thread." << endl;
 context_switch(other_thread, main_thread);
 cout << "We will never reach this line :(" << endl;
}

int main(int argc, char *argv[]) {
 // Initialize other_thread to run other_func
 other_thread = create_thread(other_func);

 cout << "Hello, world! I am the main thread" << endl;
 context_switch(main_thread, other_thread);
 cout << "Cool, I'm back in main()!" << endl;
 return 0;
}

• context_switch is called
from one function, but
returns to another

• The next time we switch
back to the original
thread, it resumes where
it left off.

29

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

30

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

1. Push all registers besides stack
onto current thread’s stack

31

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

2. Save the current stack register
(rsp) into the thread’s state space

32

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

3. Load the other thread’s saved stack
register from its state space into rsp

33

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

4. Pop registers off the other thread’s stack

34

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

Now we return back to the function in the new
thread that called context_switch previously!
(recall: ret pops the address off the stack for the
instruction we should resume at in the caller)

35

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

36

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

we start executing on one stack…

and end executing on another!

37

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

We enter via a call from a
function in the current thread

We exit to a call from a function in the new thread!

38

Context Switch
Thread main_thread;
Thread other_thread;

void other_func() {
 cout << "Howdy! I am another thread." << endl;
 context_switch(other_thread, main_thread);
 cout << "We will never reach this line :(" << endl;
}

int main(int argc, char *argv[]) {
 // Initialize other_thread to run other_func
 other_thread = create_thread(other_func);

 cout << "Hello, world! I am the main thread" << endl;
 context_switch(main_thread, other_thread);
 cout << "Cool, I'm back in main()!" << endl;
 return 0;
}

• context_switch is called
from one function, but
returns to another

• The next time we switch
back to the original
thread, it resumes where
it left off.

39

Creating New Threads
Problem: when a thread runs for the first time, it won’t have a “freeze frame”.
How does context-switching to a new thread work?
• Key idea: when created, we give a thread a fake “saved state” that appears as

though it was frozen right before executing its first function.
• In other words; we put fake saved registers and a return address that,

when ret runs, will take us "back" to the specified function it should run.

40

Context Switch Practice
Thread main_thread;
Thread other_thread;

void other_func() {
 context_switch(other_thread, main_thread);
 cout << "D" << endl;
 context_switch(other_thread, main_thread);
 cout << "A" << endl;
}

int main(int argc, char *argv[]) {
 other_thread = create_thread(other_func);
 cout << "B" << endl;
 context_switch(main_thread, other_thread);
 cout << "C" << endl;
 context_switch(main_thread, other_thread);
 return 0;
}

What would be outputted by this
program? Key points:
• context_switch is called from one

function, but returns to another
• The next time we switch back to

the original thread, it resumes
where it left off.

• New thread starts with ”fake”
freeze frame

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

41

42

Context Switch Practice
Thread main_thread;
Thread other_thread;

void other_func() {
 context_switch(other_thread, main_thread);
 cout << "D" << endl;
 context_switch(other_thread, main_thread);
 cout << "A" << endl;
}

int main(int argc, char *argv[]) {
 other_thread = create_thread(other_func);
 cout << "B" << endl;
 context_switch(main_thread, other_thread);
 cout << "C" << endl;
 context_switch(main_thread, other_thread);
 return 0;
}

What would be outputted by this
program? Key points:
• context_switch is called from one

function, but returns to another
• The next time we switch back to

the original thread, it resumes
where it left off.

Answer: BCD

43

Recap
• Overview: Dispatching and

Scheduling
• Process and Thread State
• Running a Thread
• Switching to Another Thread

Next time: how do we decide which
thread to run?

Lecture 17 takeaway: The OS
keeps a process control block
for each process and uses it to
context switch between threads.
To switch we must freeze frame
the existing register values and
load in new ones.

