
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 18
Scheduling

2

CS111 Topic 3: Multithreading, Part 2

Dispatching Scheduling Scheduling and
Preemption

Implementing
Locks and
Condition
Variables

Lecture 17 This Lecture Lecture 19

assign5: implement your own version of thread, mutex and condition_variable!

Lecture 20

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

3

Learning Goals
• Explore the tradeoffs in deciding which threads get to run and for how long
• Learn about 4 different scheduling algorithms and their tradeoffs

4

Plan For Today
• Recap: Dispatching
• Scheduling and Thread States
• Approach #1: First-Come First-Serve
• Approach #2: Round Robin
• What makes a scheduling algorithm “good”?
• Approach #3: Shortest Remaining Processing Time
• Approach #4: Priority-Based Scheduling

5

Plan For Today
• Recap: Dispatching
• Scheduling and Thread States
• Approach #1: First-Come First-Serve
• Approach #2: Round Robin
• What makes a scheduling algorithm “good”?
• Approach #3: Shortest Remaining Processing Time
• Approach #4: Priority-Based Scheduling

6

Dispatching
• A Process Control Block contains information

about a single process. It contains info including
per-thread state information.
• When we want to run a new thread, we “freeze

frame” the current running thread, save that,
and load in the “freeze frame” of the thread we
want to run.
• Freeze-frame = register state
• Context switch is changing to run another

thread. It’s a function that, as part of its
execution, returns to a different function in a
different thread than it was called from.

Process A
Control Block

A2
A1

Threads

A3

thread
state

SP

7

Context Switching
A context switch means changing the thread currently running to another
thread. We must save the current thread state and load in the new thread state.
1. Push all registers besides stack onto current thread’s stack
2. Save the current stack register (rsp) into the thread’s state space
3. Load the other thread’s saved stack register from its state space into rsp
4. Pop registers off the other thread’s stack

Super funky: we are calling a function from one
thread’s stack and execution and returning
from it in another thread’s stack and execution!

8

Context Switching
callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp
Saved %rbx
Saved %r12
Saved %r13
Saved %r14
Saved %r15

9

Context Switching
callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp
Saved %rbx
Saved %r12
Saved %r13
Saved %r14
Saved %r15

Bkmk: Go back to addr X

10

Context Switching
callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp
Saved %rbx
Saved %r12
Saved %r13
Saved %r14
Saved %r15

Bkmk: Go back to addr X
Saved %rbp
Saved %rbx
Saved %r12
Saved %r13
Saved %r14
Saved %r15

11

Context Switching
callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp
Saved %rbx
Saved %r12
Saved %r13
Saved %r14
Saved %r15

Bkmk: Go back to addr X
Saved %rbp
Saved %rbx
Saved %r12
Saved %r13
Saved %r14
Saved %r15

12

Context Switching
callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp
Saved %rbx
Saved %r12
Saved %r13
Saved %r14
Saved %r15

Bkmk: Go back to addr X
Saved %rbp
Saved %rbx
Saved %r12
Saved %r13
Saved %r14
Saved %r15

13

Context Switching
callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr YBkmk: Go back to addr X
Saved %rbp
Saved %rbx
Saved %r12
Saved %r13
Saved %r14
Saved %r15

14

Context Switching
callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr YBkmk: Go back to addr X
Saved %rbp
Saved %rbx
Saved %r12
Saved %r13
Saved %r14
Saved %r15

15

Context Switching
callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr X
Saved %rbp
Saved %rbx
Saved %r12
Saved %r13
Saved %r14
Saved %r15

16

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

we start executing on one stack…

and end executing on another!

17

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

We enter via a call from a
function in the current thread

We exit to a call from a function in the new thread!

18

New Threads
What happens if we switch to a thread that has never called context switch
before, so doesn’t have a bookmark or saved registers?

Key idea: a new thread will have a “fake freeze frame” setup (e.g. set up values
on stack, saved %rsp) that makes it look like it had context_switch called right
before the function it intended to run.

19

Context Switch
Thread main_thread;
Thread other_thread;

void other_func() {
 cout << "Howdy! I am another thread." << endl;
 context_switch(other_thread, main_thread);
 cout << "We will never reach this line :(" << endl;
}

int main(int argc, char *argv[]) {
 // Initialize other_thread to run other_func
 other_thread = create_thread(other_func);

 cout << "Hello, world! I am the main thread" << endl;
 context_switch(main_thread, other_thread);
 cout << "Cool, I'm back in main()!" << endl;
}

• context_switch is called
from one function, but
returns to another
• The next time we switch

back to the original
thread, it resumes where
it left off.

20

Plan For Today
• Recap: Dispatching
• Scheduling and Thread States
• Approach #1: First-Come First-Serve
• Approach #2: Round Robin
• What makes a scheduling algorithm “good”?
• Approach #3: Shortest Remaining Processing Time
• Approach #4: Priority-Based Scheduling

21

Tracking All Threads
How does the OS track/remember all user threads on the system?

Key idea: at any given time, a thread is in one of three states:
1. Running
2. Blocked – waiting for an event (disk I/O, network connection, etc.)
3. Ready – able to run, but waiting for CPU time

22

Thread States

Running

Ready Blocked

23

Thread States

Running

Ready Blocked

When a thread is created,
it starts out ready.

24

Thread States

Running

Ready Blocked

When the OS lets a
thread run on a core, the
thread goes to running.

25

Thread States

Running

Ready Blocked

If the thread can still run
but the OS needs to run
another thread, the thread
is taken off the core and
goes back to ready.

26

Thread States

Running

Ready Blocked

Maybe a thread is running
and reaches a point
where it can’t run
anymore (eg. waiting for
file contents from disk).
The thread will go to
blocked.

27

Thread States

Running

Ready Blocked

Maybe a thread is running
and reaches a point
where it can’t run
anymore (eg. waiting for
file contents from disk).
The thread will go to
blocked.

28

Thread States

Running

Ready Blocked

If the event the thread is
waiting for happens, and
a core is immediately
available for it, it switches
back to running.

29

Thread States

Running

Ready Blocked

If the event the thread is
waiting for happens, but
the thread can’t run yet, it
switches to ready.

30

Thread States

Running

Ready Blocked

It’s not possible to go
from ready to blocked,
because in order for a
thread to become blocked
it must do work that tells it
it must wait for
something.

31

Thread States

Running

Ready Blocked

Key question: if we have
many ready threads, how
do we decide who to run
next, and for how long?

32

Plan For Today
• Recap: Dispatching
• Scheduling and Thread States
• Approach #1: First-Come First-Serve
• Approach #2: Round Robin
• What makes a scheduling algorithm “good”?
• Approach #3: Shortest Remaining Processing Time
• Approach #4: Priority-Based Scheduling

33

First-come-first-serve
Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.

One idea - “first-come-first-serve”: keep all ready threads in a ready queue.
Add threads to the back. Run the first thread on the queue until it exits or
blocks (no timer).

Problem: thread could run away with core and run forever!

34

Plan For Today
• Recap: Dispatching
• Scheduling and Thread States
• Approach #1: First-Come First-Serve
• Approach #2: Round Robin
• What makes a scheduling algorithm “good”?
• Approach #3: Shortest Remaining Processing Time
• Approach #4: Priority-Based Scheduling

35

Round Robin
Problem: thread could run away with core and run forever!
Solution: define a time slice, the max run time without a context switch (e.g.
10ms).

Idea: round robin scheduling – run thread for one time slice, then put at back of
ready queue. (you’ll use this on assign5)

Question: what’s a good time slice?
Thought: we want to run many threads in the amount of time for human
response time, so e.g. keystroke seems instantaneous. So why not make the
time slice microscopically small?

36

Round Robin
Idea: round robin scheduling – run thread for one time slice, then put at back of
ready queue. (you’ll use this on assign5)

Question: what’s a good time slice? Why not make it microscopically small?
If too small, context switch costs are very high, waste cores

Why not make it very large?
If too large, slow response, threads can monopolize cores

Try to balance: usually in 5-10ms range, Linux is 4ms

37

Plan For Today
• Recap: Dispatching
• Scheduling and Thread States
• Approach #1: First-Come First-Serve
• Approach #2: Round Robin
• What makes a scheduling algorithm “good”?
• Approach #3: Shortest Remaining Processing Time
• Approach #4: Priority-Based Scheduling

38

Scheduling Algorithms
How do we decide whether a scheduling algorithm is good?
• Minimize response time (time to useful result)

• e.g. keystroke -> key appearing, or “make” -> program compiled
• Assume useful result is when the thread blocks or completes

• Use resources efficiently
• keep cores + disks busy
• low overhead (minimize context switches)

• Fairness (e.g. with many users, or even many jobs for one user)

39

Comparing FCFS/RR: Scenario 1

B CA

time 100 101 103

FIFO
Avg:
101.3

A
100ms

B
1ms

C
2ms

Ready Queue

A

time 2 5 103

Round Robin
Avg:
36.7B C A C A

Is RR always
better than FCFS?

40

Comparing FCFS/RR: Scenario 2

A
10ms

B
10ms

C
10ms

Ready Queue

B CA

time 10 20 30

FIFO
Avg:
20

A

time 28 29 30

Round Robin
Avg:
29B C A B C A B CA B C...

41

What’s the optimal
approach if we want to

minimize average
response time?

42

Plan For Today
• Recap: Dispatching
• Scheduling and Thread States
• Approach #1: First-Come First-Serve
• Approach #2: Round Robin
• What makes a scheduling algorithm “good”?
• Approach #3: Shortest Remaining Processing Time
• Approach #4: Priority-Based Scheduling

43

Shortest Remaining Processing Time
What would it look like if we optimized for completion time? (time to finish, or
time to block).

Idea - SRPT: pick the thread that will finish the most quickly and run it to
completion. This is the optimal solution for minimizing average response time.

44

Evaluating SRPT

B CA

time 100 101 103

FIFO
Avg:
101.3

A
100ms

B
1ms

C
2ms

Ready Queue

A

time 2 5 103

Round Robin
Avg:
36.7B C A C A

B C A

1 3

SRPT
Avg:
35.7

45

Evaluating SRPT

A
10ms

B
10ms

C
10ms

B CA

time 10 20 30

FIFO
Avg:
20

A

time 28 29 30

Round Robin
Avg:
29B C A B C A B CA B C...

time

SRPT
Avg:
20B CA

10 20

Ready Queue

46

Shortest Remaining Processing Time
SRPT: pick the thread that will finish the most quickly and run it to completion.
This is the optimal solution for minimizing average response time.

What are some problems/challenges with the SRPT approach?

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

47

48

Shortest Remaining Processing Time
SRPT: pick the thread that will finish the most quickly and run it to completion.
This is the optimal solution for minimizing average response time.

What are some problems/challenges with the SRPT approach?

Problem #1: how do we know which one will finish most quickly? (we must be
able to predict the future…)
Problem #2: if we have many short-running threads and one long-running one,
the long one will not get to run (“starvation”)

49

SRPT
Another advantage of SRPT: improves overall resource utilization
• If a thread is I/O-Bound – e.g. constantly reading from disk (frequently waits

for disk), it will get priority vs. thread that needs lots of CPU time – CPU
Bound.

• “I/O-Bound” - the time to complete them is dictated by how long it takes for some
external mechanism to complete its work (disk, network)

• “CPU-Bound” - the time to complete them is dictated by how long it takes us to do the
CPU computation

Gives preference to those who need the least.

Problem: how can we get close to SRPT but without having to predict the
future or neglect certain threads?

50

Priority-Based Scheduling
Goal: we want to get close to SRPT, but without having to predict the future, and
without neglecting certain threads.

Key Idea: can use past performance to predict future performance.
• Behavior tends to be consistent
• If a thread runs for a long time without blocking, it’s likely to continue running

51

Plan For Today
• Recap: Dispatching
• Scheduling and Thread States
• Approach #1: First-Come First-Serve
• Approach #2: Round Robin
• What makes a scheduling algorithm “good”?
• Approach #3: Shortest Remaining Processing Time
• Approach #4: Priority-Based Scheduling

52

Priority-Based Scheduling
Goal: we want to get close to SRPT, but without having to predict the future, and
without neglecting certain threads.

Idea: let’s make threads have priorities that adjust over time as they run. We’ll
have 1 ready queue for each priority, and always run highest-priority threads.
• Overall idea: threads that aren't using much CPU time stay in the higher-

priority queues, threads that are migrate to lower-priority queues.
• After blocking, thread starts in highest priority queue
• If a thread reaches the end of its time slice without blocking it moves to the

next lower queue.
Problem: could still neglect long-running threads!

53

Priority-Based Scheduling
Idea: let’s make threads have priorities that adjust over time as they run. We’ll
have 1 ready queue for each priority, and always run highest-priority threads.
Problem: could still neglect long-running threads!

Let’s keep track of recent CPU usage per thread. If a thread hasn’t run in a long
time, its priority goes up. And if it has run a lot recently, priority goes down.
(4.4 BSD Unix used this, ideas carried forward)
• No more neglecting threads: a thread that hasn’t run in a long time will get its

priority increased
• If there are many equally-long threads that want to run, the priorities even out

over time, at a kind of “equilibrium”

54

Scheduling
Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.
We discussed 4 main designs:
1. First-come-first-serve (FIFO / FCFS): keep threads in ready queue, add

threads to the back, run thread from front until completion or blocking.
2. Round Robin: run thread for one time slice, then add to back of queue if

wants more time
3. Shortest Remaining Processing Time (SRPT): pick the thread that will

complete or block the soonest and run it to completion.
4. Priority-Based Scheduling: threads have priorities, and we have one ready

queue per priority. Threads adjust priorities based on time slice usage, or
based on recent CPU usage (4.4 BSD Unix)

55

Recap
• Recap: Dispatching
• Scheduling and Thread States
• Approach #1: First-Come First-Serve
• Approach #2: Round Robin
• What makes a scheduling algorithm

“good”?
• Approach #3: Shortest Remaining

Processing Time
• Approach #4: Priority-Based Scheduling

Next time: preemption

Lecture 18 takeaway: For
scheduling, we want to
minimize response time, use
resources efficiently, and be
fair. SRPT is the best to
minimize average response
time, but we can only
approximate it due to needing
to predict the future.

