
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 19
Preemption and Implementing Locks

😷 masks recommended

2

CS111 Topic 3: Multithreading, Part 2

Dispatching Scheduling

Preemption
and

Implementing
Locks

Implementing
Locks and
Condition
Variables

Lecture 17 Lecture 18 This Lecture

assign5: implement your own version of thread, mutex and condition_variable!

Lecture 20

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

3

Learning Goals
• Learn about the assign5 infrastructure and how to implement a

dispatcher/scheduler with preemption
• Understand more about how interrupts work and how they can cause race

conditions
• Use our understanding of threads and interrupts to implement locks

4

Plan For Today
• Recap: Scheduling
• Preemption and Interrupts
• Implementing Locks

cp -r /afs/ir/class/cs111/lecture-code/lect19 .

5

Plan For Today
• Recap: Scheduling
• Preemption and Interrupts
• Implementing Locks

cp -r /afs/ir/class/cs111/lecture-code/lect19 .

6

Scheduling
Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.
We discussed 4 main designs:
1. First-come-first-serve (FIFO / FCFS): keep threads in ready queue, add

threads to the back, run thread from front until completion or blocking.
2. Round Robin: run thread for one time slice, then add to back of queue if

wants more time
3. Shortest Remaining Processing Time (SRPT): pick the thread that will

complete or block the soonest and run it to completion.
4. Priority-Based Scheduling: threads have priorities, and we have one ready

queue per priority. Threads adjust priorities based on time slice usage, or
based on recent CPU usage (4.4 BSD Unix)

7

Shortest Remaining Processing Time
SRPT: pick the thread that will finish the most quickly and run it to completion.
This is the optimal solution for minimizing average response time.

What are some problems/challenges with the SRPT approach?

Problem #1: how do we know which one will finish most quickly? (we must be
able to predict the future…)
Problem #2: if we have many short-running threads and one long-running one,
the long one will not get to run

8

SRPT
Another advantage of SRPT: improves overall resource utilization
• If a thread is I/O-Bound – e.g. constantly reading from disk (frequently waits

for disk), it will get priority vs. thread that needs lots of CPU time – CPU
Bound.

• “I/O-Bound” - the time to complete them is dictated by how long it takes for some
external mechanism to complete its work (disk, network)

• “CPU-Bound” - the time to complete them is dictated by how long it takes us to do the
CPU computation

Gives preference to those who need the least.

9

Plan For Today
• Recap: Scheduling
• Preemption and Interrupts
• Implementing Locks

cp -r /afs/ir/class/cs111/lecture-code/lect19 .

10

Preemption and Interrupts
On assign5, you’ll implement a combined scheduler+dispatcher using the
Round Robin approach.
• Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run
code every X microseconds.
• Fires a timer interrupt at specified interval

Idea: we can use the timer handler to trigger a context switch!

11

Timer Demo
// this program runs timer_interrupt_handler every 0.5 seconds

void timer_interrupt_handler() {
 cout << "Timer interrupt occurred!" << endl;
}

int main(int argc, char *argv[]) {
 // specify microsecond interval and function to call
 timer_init(500000, timer_interrupt_handler);
 while (true) {}
}

interrupt.cc

12

Timer and Interrupts
We can use the timer to trigger a context switch!
• For simplicity, on assign5 we’ll always do a context switch when the timer fires

(e.g. even if a thread finished early, and another started early, we still switch
every X ms)
• Want to avoid: what if the timer goes off while we are handling the timer

going off?
• Key detail: the timer disables interrupts when running your timer handler, to

avoid the timer interrupting itself. Interrupts are re-enabled once the handler
finishes.
• Interrupt disabling is global state (not per thread), cannot be done by user

programs.

13

Timer Demo
// this program runs timer_interrupt_handler every 0.5 seconds

void timer_interrupt_handler() {
 cout << "Timer interrupt occurred!" << endl;
}

int main(int argc, char *argv[]) {
 // specify microsecond interval and function to call
 timer_init(500000, timer_interrupt_handler);
 while (true) {}
}

interrupt.cc

Interrupts globally
disabled at start

Interrupts globally re-enabled after

14

Approximate timer.cc Code
void timer_interrupt() {
 if (!enabled_flag) {
 interrupted = 1;
 return;
 }

 intr_enable(false);
 timer_handler();
 intr_enable(true);
}

15

Timer and Interrupts
We can use the timer to trigger a context switch! Let’s see what this looks like.

context-switch-preemption-buggy.cc

16

Enabling/Disabling Interrupts
If we are switching between two already-running threads, interrupts will always
be properly enabled and disabled. Let’s see how! (Note: assumption we are
running on a single-core system)

17

Enabling/Disabling Interrupts
Thread #2

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Interrupts
ON

Thread #1 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

18

Enabling/Disabling Interrupts
Thread #1 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

Thread #2

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Interrupts
OFF

Timer! ⏰

19

Enabling/Disabling Interrupts
Thread #2

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Interrupts
OFF

Thread #1 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

20

Enabling/Disabling Interrupts
Thread #2 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Interrupts
OFF

Thread #1

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

21

Enabling/Disabling Interrupts
Thread #2 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Interrupts
ON

Thread #1

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

22

Enabling/Disabling Interrupts
Thread #2 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Interrupts
ON

Thread #1

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

23

Enabling/Disabling Interrupts
Thread #2 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Thread #1

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

Timer! ⏰

Interrupts
OFF

24

Enabling/Disabling Interrupts
Thread #2 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Thread #1

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

Interrupts
OFF

25

Enabling/Disabling Interrupts
Thread #2

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Thread #1 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

Interrupts
OFF

26

Enabling/Disabling Interrupts
Thread #2

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Thread #1 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

Interrupts
ON

27

Enabling/Disabling Interrupts
Thread #2

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Thread #1 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

Interrupts
ON

28

Enabling/Disabling Interrupts
What about when a thread runs for the first time? Will interrupts be enabled?

29

Will interrupts be enabled when
Thread #2 first runs?

Thread #2

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Interrupts
ON

Thread #1 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
} Respond on PollEv: pollev.com/cs111

or text CS111 to 22333 once to join.

30

Enabling/Disabling Interrupts
Thread #2

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Interrupts
ON

Thread #1 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

31

Enabling/Disabling Interrupts
Thread #2

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Interrupts
OFF

Timer! ⏰

Thread #1 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

32

Enabling/Disabling Interrupts
Thread #2

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Interrupts
OFF

Thread #1 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

33

Enabling/Disabling Interrupts
Thread #2 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Interrupts
OFF

Thread #1 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

34

Enabling/Disabling Interrupts
Thread #2 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

void other_func() {
 while (true) {
 cout << "Other thread here!
Hello." << endl;
 }
}

Interrupts
OFF

Problem: when we start executing another thread for the first time, it
won’t re-enable interrupts, so the timer won’t be heard anymore!

Thread #1 (Running)

void timer_interrupt_handler() {
 ...
context_switch(*nonrunning_thread,
 *current_thread);
}

int main(int argc, char *argv[]) {
 ...
 while (true) {
 cout << "I am the main thread"
 << endl;
 }
}

35

Demo: context-switch-
preemption-buggy.cc

36

Enabling Interrupts
Solution: manually enable interrupts when a thread is first run.
void other_func() {
 intr_enable(true); // provided func to enable/disable
 while (true) {
 cout << "Other thread here! Hello." << endl;
 }
}

You’ll need to do this on assign5 when a thread is first run.

37

Interrupts So Far
• Interrupts can be turned on and off globally
• When the timer fires, it disables interrupts while the timer handler is running,

and re-enables them after
• We must make sure that the new thread always enables interrupts when it is

switched to

38

Plan For Today
• Recap: Scheduling
• Preemption and Interrupts
• Implementing Locks

cp -r /afs/ir/class/cs111/lecture-code/lect19 .

39

Implementing Locks
Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
• Track whether it is locked / unlocked
• The lock “owner” (if any) – perhaps combine with first bullet
• A list of threads waiting to get this lock

40

Implementing Locks
Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
• Track whether it is locked / unlocked
• The lock “owner” (if any) – perhaps combine with first bullet
• A list of threads waiting to get this lock

We can keep a queue of threads
(for fairness).

41

Lock
1. If this lock is unlocked, mark it as locked by the current thread
2. Otherwise, add the current thread to the back of the waiting queue

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
}

42

Unlock
1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::unlock() {
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove()); // add to ready queue
 }
}

43

Unlock
1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::unlock() {
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove()); // add to ready queue
 }
}

44

Implementing Locks
With our understanding of threads and how they are run and switched between,
we can understand how a mutex works – cool!

Question: could race conditions occur in our mutex implementation?
Yes. We can be interrupted at any time to switch to another thread.

We can have race conditions within the thing that helps us prevent race
conditions? How are we supposed to fix that?
• We can’t use a mutex, because we’re writing the code to implement it!

More next time…

45

Recap
• Recap: Scheduling
• Preemption and Interrupts
• Implementing Locks

Next time: More about mutex and
condition variable implementations

Lecture 19 takeaway: To
implement preemption and
locks, we must make sure to
correctly enable and disable
interrupts. Locks consist of a
waiting queue and context
switching to make threads
sleep.

