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CS111 Topic 4: Virtual Memory

Virtual 
Memory 

Introduction

Dynamic 
Address 

Translation

Demand 
Paging

The Clock 
Algorithm

Lecture 21 Today Lecture 24

assign6: implement demand paging system to translate addresses and load/store 
memory contents for programs as needed.

Lecture 23

Virtual Memory - How can one set of memory be shared among several processes? 
How can the operating system manage access to a limited amount of system 
memory?
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Learning Goals
• Understand the benefits of dynamic address translation
• Reason about the tradeoffs in different ways to implement dynamic address 

translation
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Plan For Today
• Recap: virtual memory and dynamic address translation
• Approach #2: Multiple Segments
• Approach #3: Paging
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Virtual memory is a 
mechanism for multiple 

processes to 
simultaneously use system 

memory.
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Sharing Memory
We want to allow multiple processes to simultaneously use system memory.  
Our goals are:
• Multitasking – allow multiple processes to be memory-resident at once
• Transparency – no process should need to know memory is shared.   Each 

must run regardless of the number and/or locations of processes in memory.
• Isolation – processes must not be able to corrupt each other
• Efficiency (both of CPU and memory) – shouldn’t be degraded badly by sharing
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Load-Time Relocation
• When a process is loaded to run, place it in a 

designated memory space.
• That memory space is for everything for that process – 

stack/data/code
• Interesting fact – when a program is compiled, it is 

compiled assuming its memory starts at address 0.  
Therefore, we must update its addresses when we load 
it to match its real starting address.
• Use first-fit or best-fit allocation to manage available 

memory.
• Problems: isolation, deciding memory sizes in advance, 

fragmentation, updating addresses when loading

Process 1

0

∞

Process 3

Operating
System

Process 6
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Dynamic Address Translation
Idea: What if, instead of translating addresses when a program is loaded, the OS 
intercepted every memory reference and translated it?
• The OS can prohibit processes from accessing certain addresses (e.g. OS 

memory or another process’s memory)
• Gives the OS lots of flexibility in managing memory
• Every process can now think that it is located starting at address 0 and is the 

only process in memory
• The OS will translate each process’s address to the real one it’s mapped to
• As a result, a process’s virtual address space may look very different from how 

the memory is really laid out in the physical address space.
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Dynamic Address Translation
We will add a memory management unit (MMU) in hardware that changes 
addresses dynamically during every memory reference.
• Virtual address is what the program sees
• Physical address is the actual location in memory

Core MMU Memory
Virtual address Physical address

data
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Dynamic Address Translation
Key question: how do the MMU / OS translate from virtual addresses to physical 
ones?  Three designs we’ll consider:
1. Base and bound
2. Multiple Segments
3. Paging
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Approach #1: Base and Bound
• “base” is physical address starting point – corresponds to virtual address 0
• “bound” is one greater than highest allowable virtual memory address
• Each process has own base/bound.  Stored in PCB and loaded into two 

registers when running.

On each memory reference:
• Compare virtual address to bound, trap if >= (invalid memory reference)
• Otherwise, add base to virtual address to produce physical address
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Approach #1: Base and Bound
• Key idea: each process appears to have a completely private memory whose 

size is determined by the bound register.
• The only physical address is in the base register, controlled by the OS.  Process 

sees only virtual addresses!
• OS can update a process’s base/bound if needed!  E.g. it could move physical 

memory to a new location or increase bound.
• Benefits: inexpensive, little space needed, separation between virtual and 

physical addresses.
• Drawbacks: physical space must be contiguous, fragmentation, growth only 

upwards, no read-only region support
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Base and Bound

Process A Virtual 
Address Space

Code
0

bound

Data

Stack

0

∞

Process A

Physical Address Space

Process A base
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Plan For Today
• Recap: virtual memory and dynamic address translation
• Approach #2: Multiple Segments
• Approach #3: Paging
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Idea: what if we broke up 
the virtual address space 

into segments and mapped 
each segment 

independently?
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Approach #2: Multiple Segments
Key Idea: Each process is split among several variable-size areas of memory, 
called segments.
• E.g. one segment for code, one segment for data/heap, one segment for stack.
• The OS maps each segment individually – each segment would have its own 

base and bound, and these are stored in a segment map for that process
• We can also store a protection bit for each segment; whether the process is 

allowed to write to it or not in addition to reading
• Now each segment can have its own permissions, grow/shrink independently, 

be swapped to disk independently, be moved independently, and even be 
shared between processes (e.g. shared code).
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Multiple Segments

Process A Virtual Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address SpaceProcess B Virtual Address Space

Code
0

∞

Data

Stack
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Approach #2: Multiple Segments
On each memory reference:
• Look up info for the segment that address is in
• Compare virtual address to that segment’s bound, trap if >= (invalid memory 

reference)
• Add segment’s base to virtual address to produce physical address

Problem: how do we know which segment a virtual address is in?
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Approach #2: Multiple Segments
Problem: how do we know which segment a virtual address is in?
One Idea: make virtual addresses such that the top bits of the address specify its 
segment, and the low bits of the address specify the offset in that segment.

Example: PDP-10 computer had design with 2 segments, and the most-
significant bit in addresses encoded which one was being referenced.
Another possibility: deduce from machine code instruction executing

0x122 0x456

Virtual Address

Segment # Offset



21

Multiple Segments

Process A Virtual 
Address Space

Code
0

Data

Stack

0

∞

Physical Address Space

• Do not need to initially map full 
virtual address space, nor map it 
contiguously.  

• Instead, individually/contiguously 
map each segment. 

• Move an individual segment in 
physical memory by modifying its 
base (pinned to that segment’s 
offset 0)

• Expand an individual segment’s 
size by adjusting its bound.
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Multiple Segments – Changing A Base

Process A Virtual 
Address Space

Code
0

Data

Stack

0

∞

Physical Address Space

data 
bound

Process A data base
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Multiple Segments – Changing A Base

Process A Virtual 
Address Space

Code
0

Data

Stack

0

∞

Physical Address Space

data 
bound

Process A data base
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Multiple Segments – Changing A Bound

Process A Virtual 
Address Space

Code
0

Data

Stack

0

∞

Physical Address Space

data 
bound

Process A data base

stack 
bound
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Approach #2: Multiple Segments
What are some benefits of this approach?
• Can move segments to compact memory and eliminate fragmentation
• Flexibility – can manage each segment independently
• Can share segments between processes

What are some drawbacks of this approach?
• Variable-length segments result in memory fragmentation – can move, but 

creates friction
• Typically small number of segments
• Encoding segment + offset rigidly divides virtual addresses (how many bits for 

segment vs. how many for offset?)
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Multiple Segments – Changing A Bound

Process A Virtual 
Address Space

Code
0

Data

Stack

0

∞

Physical Address Space

data 
bound

Process A data base

• Growing a segment upwards 
works well for the heap, but not 
for the stack, for the same reason 
as base and bound: we can’t 
move existing stack data after the 
program starts.

stack 
bound
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Idea: what if we broke up 
the virtual address space 
not into variable-length 

segments, but into fixed-
size chunks?
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Plan For Today
• Recap: virtual memory and dynamic address translation
• Approach #2: Multiple Segments
• Approach #3: Paging
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Approach #3: Paging
Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size 
chunks called pages.  (Common size is 4KB pages).
• A “page” of virtual memory maps to a “page” of physical memory.  No partial 

pages
• The page number is a numerical ID for a page.  We have virtual page numbers 

and physical page numbers.
• A virtual address is comprised of the virtual page # and offset in that page.
• A physical address is comprised of the physical page # and offset in that page.
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Paging

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
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Paging

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
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Paging

Process A Virtual Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address SpaceCode0

∞

Data

Stack

Process B Virtual Address Space
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Paging

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

• Do not need to map each 
segment contiguously.  Instead, 
we map just one page at a time.  

• We can later map more pages 
either up or down, because the 
start of the segment is not 
pinned to a physical address. 

• We can move each page 
separately in physical memory as 
well.
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Paging

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
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Paging

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
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Page Maps
How do we track, for a given process, which virtual page maps to which 
physical page?
Each process has a page map (“page table”) with an entry for each virtual page, 
mapping it to a physical page number and other info such as a protection bit 
(read-only or read-write).
The page map is stored in contiguous memory.
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Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Virtual page # = index
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Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Virtual page # Offset

Virtual Address

Physical page # Offset

Physical Address

12 bits 12 bits
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Virtual Address Encodes Page + Offset

Code

0

Key idea: if you pick a 
page size that is a power 
of the base, the upper 
digits identify the page 
#.

E.g. base 10, say page 
size = 103 = 1000:

0000-0999

1000-1999

2000-2999
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Virtual Address Encodes Page + Offset

Code

0

Key idea: if you pick a 
page size that is a power 
of the base, the upper 
digits identify the page 
#.

E.g. base 16, say page 
size = 163 = 4096:

0x0000-0x0fff

0x1000-0x1fff

0x2000-0x2fff

0x323 0x400

Virtual Address

Virtual page # Offset

0x323400
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Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Virtual page # Offset

Virtual Address

Physical page # Offset

Physical Address

12 bits 12 bits

For 4KB pages (4096 bytes), the offset can be 0-4095.  Thus, 
we can store the offset in 12 bits (the amount needed to 
represent any number 0-4095).  12 bits = 3 hexadecimal digits.
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Page Map

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0
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Process A Virtual 
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map
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Process A Virtual 
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map
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Process A Virtual 
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

Virtual Address
0x2223
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Process A Virtual 
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223
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Process A Virtual 
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

??? ???
Physical page # Offset

Physical Address
???
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Process A Virtual 
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

0x1 ???
Physical page # Offset

Physical Address
???
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Process A Virtual 
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

0x1 0x223
Physical page # Offset

Physical Address
???
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Process A Virtual 
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

0x1 0x223
Physical page # Offset

Physical Address
0x1223
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Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

??? ???

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 ???
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Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address Physical Address

Virtual page # Physical page #Offset Offset

0x3400

??? ???

???
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Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342

Physical Address

Virtual page # Physical page #Offset Offset

0x3400

???

???
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Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342 0x400

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 ???
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Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342 0x400

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 0x2342400
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PollEV: What is the physical address?

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

??? ???

Virtual Address

??? ???

Physical Address

Virtual page # Physical page #Offset Offset

0x1456 ???

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.
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Practice: What is the physical address?

0x1 0x456

Virtual Address

0x13241 0x456

Physical Address

Virtual page # Physical page #Offset Offset

0x1456 0x13241456

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0
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Practice: What is the physical address?

unused (16 bits) Virtual page # (36 bits) Offset (12 bits)

x86-64 64-bit Virtual Address

Physical page # (40 bits) Offset (12 bits)

x86-64 52-bit Physical Address

x86-64 with 4KB pages has 36-bit virtual page numbers and 40-bit physical page numbers.

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0
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Each Process Has A Page Map

Process A Virtual Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address SpaceCode0

∞

Data

Stack

Process B Virtual Address Space

Physical page # WR? PR?

12 3 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 2 1 1

3 9 0 1

2 1 0 1

1 7 0 1

0 5 0 1

Physical page # WR? PR?

12 10 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 8 1 1

0 12 0 1
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Paging
How do we provide memory to a process?
• Keep a global free list of physical pages – grab the first one when we need one
• Update process page table for a virtual page to map to this physical page

In this way, we can represent a process’s segments (e.g. code, data) as a 
collection of 1 or more pages, starting on any page boundary.
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Requesting More Memory

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
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Requesting More Memory

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
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Paging
Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size 
chunks called pages.  (Common size is 4KB pages).
• A “page” of virtual memory maps to a “page” of physical memory.  No partial 

pages.   No more external fragmentation! (but some internal fragmentation if 
not all of a page is used).
• The page number is a numerical ID for a page.  We have virtual page numbers 

and physical page numbers.
• Each process has a page map (“page table”) with an entry for each virtual 

page, mapping it to a physical page number and other info such as a protection 
bit (read-only or read-write).
• A memory address can tell us the page number and offset within that page.
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Paging
On each memory reference:
• Look up info for that virtual page in the page map
• If it’s a valid virtual page number, get the physical page number it maps to, and 

combine it with the specified offset to produce the physical address.

Problem: what about invalid page numbers?  I.e. how do we know/represent 
which pages are valid or invalid?
Solution: have entries in the page map for all pages, including invalid ones.  Add 
an additional field marking whether it’s valid (“present”).
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Recap
• Recap: virtual memory and dynamic 

address translation
• Approach #2: Multiple Segments
• Approach #3: Paging

Next time: demand paging

Lecture 22 takeaway: 
Dynamic Address translation 
means that the OS intercepts 
and translates each memory 
access.  Initial approaches to 
this include base+bound per 
process, or expanding that to 
be base+bound per variable-
length segment, or instead 
dividing into fixed-size pages.


