
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 22
Dynamic Address Translation

2

CS111 Topic 4: Virtual Memory

Virtual
Memory

Introduction

Dynamic
Address

Translation

Demand
Paging

The Clock
Algorithm

Lecture 21 Today Lecture 24

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

Lecture 23

Virtual Memory - How can one set of memory be shared among several processes?
How can the operating system manage access to a limited amount of system
memory?

3

Learning Goals
• Understand the benefits of dynamic address translation
• Reason about the tradeoffs in different ways to implement dynamic address

translation

4

Plan For Today
• Recap: virtual memory and dynamic address translation
• Approach #2: Multiple Segments
• Approach #3: Paging

5

Plan For Today
• Recap: virtual memory and dynamic address translation
• Approach #2: Multiple Segments
• Approach #3: Paging

6

Virtual memory is a
mechanism for multiple

processes to
simultaneously use system

memory.

7

Sharing Memory
We want to allow multiple processes to simultaneously use system memory.
Our goals are:
• Multitasking – allow multiple processes to be memory-resident at once
• Transparency – no process should need to know memory is shared. Each

must run regardless of the number and/or locations of processes in memory.
• Isolation – processes must not be able to corrupt each other
• Efficiency (both of CPU and memory) – shouldn’t be degraded badly by sharing

8

Load-Time Relocation
• When a process is loaded to run, place it in a

designated memory space.
• That memory space is for everything for that process –

stack/data/code
• Interesting fact – when a program is compiled, it is

compiled assuming its memory starts at address 0.
Therefore, we must update its addresses when we load
it to match its real starting address.
• Use first-fit or best-fit allocation to manage available

memory.
• Problems: isolation, deciding memory sizes in advance,

fragmentation, updating addresses when loading

Process 1

0

∞

Process 3

Operating
System

Process 6

9

Dynamic Address Translation
Idea: What if, instead of translating addresses when a program is loaded, the OS
intercepted every memory reference and translated it?
• The OS can prohibit processes from accessing certain addresses (e.g. OS

memory or another process’s memory)
• Gives the OS lots of flexibility in managing memory
• Every process can now think that it is located starting at address 0 and is the

only process in memory
• The OS will translate each process’s address to the real one it’s mapped to
• As a result, a process’s virtual address space may look very different from how

the memory is really laid out in the physical address space.

10

Dynamic Address Translation
We will add a memory management unit (MMU) in hardware that changes
addresses dynamically during every memory reference.
• Virtual address is what the program sees
• Physical address is the actual location in memory

Core MMU Memory
Virtual address Physical address

data

11

Dynamic Address Translation
Key question: how do the MMU / OS translate from virtual addresses to physical
ones? Three designs we’ll consider:
1. Base and bound
2. Multiple Segments
3. Paging

12

Approach #1: Base and Bound
• “base” is physical address starting point – corresponds to virtual address 0
• “bound” is one greater than highest allowable virtual memory address
• Each process has own base/bound. Stored in PCB and loaded into two

registers when running.

On each memory reference:
• Compare virtual address to bound, trap if >= (invalid memory reference)
• Otherwise, add base to virtual address to produce physical address

13

Approach #1: Base and Bound
• Key idea: each process appears to have a completely private memory whose

size is determined by the bound register.
• The only physical address is in the base register, controlled by the OS. Process

sees only virtual addresses!
• OS can update a process’s base/bound if needed! E.g. it could move physical

memory to a new location or increase bound.
• Benefits: inexpensive, little space needed, separation between virtual and

physical addresses.
• Drawbacks: physical space must be contiguous, fragmentation, growth only

upwards, no read-only region support

14

Base and Bound

Process A Virtual
Address Space

Code
0

bound

Data

Stack

0

∞

Process A

Physical Address Space

Process A base

15

Plan For Today
• Recap: virtual memory and dynamic address translation
• Approach #2: Multiple Segments
• Approach #3: Paging

16

Idea: what if we broke up
the virtual address space

into segments and mapped
each segment

independently?

17

Approach #2: Multiple Segments
Key Idea: Each process is split among several variable-size areas of memory,
called segments.
• E.g. one segment for code, one segment for data/heap, one segment for stack.
• The OS maps each segment individually – each segment would have its own

base and bound, and these are stored in a segment map for that process
• We can also store a protection bit for each segment; whether the process is

allowed to write to it or not in addition to reading
• Now each segment can have its own permissions, grow/shrink independently,

be swapped to disk independently, be moved independently, and even be
shared between processes (e.g. shared code).

18

Multiple Segments

Process A Virtual Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address SpaceProcess B Virtual Address Space

Code
0

∞

Data

Stack

19

Approach #2: Multiple Segments
On each memory reference:
• Look up info for the segment that address is in
• Compare virtual address to that segment’s bound, trap if >= (invalid memory

reference)
• Add segment’s base to virtual address to produce physical address

Problem: how do we know which segment a virtual address is in?

20

Approach #2: Multiple Segments
Problem: how do we know which segment a virtual address is in?
One Idea: make virtual addresses such that the top bits of the address specify its
segment, and the low bits of the address specify the offset in that segment.

Example: PDP-10 computer had design with 2 segments, and the most-
significant bit in addresses encoded which one was being referenced.
Another possibility: deduce from machine code instruction executing

0x122 0x456

Virtual Address

Segment # Offset

21

Multiple Segments

Process A Virtual
Address Space

Code
0

Data

Stack

0

∞

Physical Address Space

• Do not need to initially map full
virtual address space, nor map it
contiguously.

• Instead, individually/contiguously
map each segment.

• Move an individual segment in
physical memory by modifying its
base (pinned to that segment’s
offset 0)

• Expand an individual segment’s
size by adjusting its bound.

22

Multiple Segments – Changing A Base

Process A Virtual
Address Space

Code
0

Data

Stack

0

∞

Physical Address Space

data
bound

Process A data base

23

Multiple Segments – Changing A Base

Process A Virtual
Address Space

Code
0

Data

Stack

0

∞

Physical Address Space

data
bound

Process A data base

24

Multiple Segments – Changing A Bound

Process A Virtual
Address Space

Code
0

Data

Stack

0

∞

Physical Address Space

data
bound

Process A data base

stack
bound

25

Approach #2: Multiple Segments
What are some benefits of this approach?
• Can move segments to compact memory and eliminate fragmentation
• Flexibility – can manage each segment independently
• Can share segments between processes

What are some drawbacks of this approach?
• Variable-length segments result in memory fragmentation – can move, but

creates friction
• Typically small number of segments
• Encoding segment + offset rigidly divides virtual addresses (how many bits for

segment vs. how many for offset?)

26

Multiple Segments – Changing A Bound

Process A Virtual
Address Space

Code
0

Data

Stack

0

∞

Physical Address Space

data
bound

Process A data base

• Growing a segment upwards
works well for the heap, but not
for the stack, for the same reason
as base and bound: we can’t
move existing stack data after the
program starts.

stack
bound

27

Idea: what if we broke up
the virtual address space
not into variable-length

segments, but into fixed-
size chunks?

28

Plan For Today
• Recap: virtual memory and dynamic address translation
• Approach #2: Multiple Segments
• Approach #3: Paging

29

Approach #3: Paging
Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).
• A “page” of virtual memory maps to a “page” of physical memory. No partial

pages
• The page number is a numerical ID for a page. We have virtual page numbers

and physical page numbers.
• A virtual address is comprised of the virtual page # and offset in that page.
• A physical address is comprised of the physical page # and offset in that page.

30

Paging

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

31

Paging

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

32

Paging

Process A Virtual Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address SpaceCode0

∞

Data

Stack

Process B Virtual Address Space

33

Paging

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

• Do not need to map each
segment contiguously. Instead,
we map just one page at a time.

• We can later map more pages
either up or down, because the
start of the segment is not
pinned to a physical address.

• We can move each page
separately in physical memory as
well.

34

Paging

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

35

Paging

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

36

Page Maps
How do we track, for a given process, which virtual page maps to which
physical page?
Each process has a page map (“page table”) with an entry for each virtual page,
mapping it to a physical page number and other info such as a protection bit
(read-only or read-write).
The page map is stored in contiguous memory.

37

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Virtual page # = index

38

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Virtual page # Offset

Virtual Address

Physical page # Offset

Physical Address

12 bits 12 bits

39

Virtual Address Encodes Page + Offset

Code

0

Key idea: if you pick a
page size that is a power
of the base, the upper
digits identify the page
#.

E.g. base 10, say page
size = 103 = 1000:

0000-0999

1000-1999

2000-2999

40

Virtual Address Encodes Page + Offset

Code

0

Key idea: if you pick a
page size that is a power
of the base, the upper
digits identify the page
#.

E.g. base 16, say page
size = 163 = 4096:

0x0000-0x0fff

0x1000-0x1fff

0x2000-0x2fff

0x323 0x400

Virtual Address

Virtual page # Offset

0x323400

41

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Virtual page # Offset

Virtual Address

Physical page # Offset

Physical Address

12 bits 12 bits

For 4KB pages (4096 bytes), the offset can be 0-4095. Thus,
we can store the offset in 12 bits (the amount needed to
represent any number 0-4095). 12 bits = 3 hexadecimal digits.

42

Page Map

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

43

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

44

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

45

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

Virtual Address
0x2223

46

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

47

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

??? ???
Physical page # Offset

Physical Address
???

48

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

0x1 ???
Physical page # Offset

Physical Address
???

49

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

0x1 0x223
Physical page # Offset

Physical Address
???

50

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR?

12 3 1

11 X X

10 X X

9 X X

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

1 7 0

0 5 0

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

0x1 0x223
Physical page # Offset

Physical Address
0x1223

51

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

??? ???

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 ???

52

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address Physical Address

Virtual page # Physical page #Offset Offset

0x3400

??? ???

???

53

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342

Physical Address

Virtual page # Physical page #Offset Offset

0x3400

???

???

54

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342 0x400

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 ???

55

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342 0x400

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 0x2342400

56

PollEV: What is the physical address?

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

??? ???

Virtual Address

??? ???

Physical Address

Virtual page # Physical page #Offset Offset

0x1456 ???

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

57

58

Practice: What is the physical address?

0x1 0x456

Virtual Address

0x13241 0x456

Physical Address

Virtual page # Physical page #Offset Offset

0x1456 0x13241456

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

59

Practice: What is the physical address?

unused (16 bits) Virtual page # (36 bits) Offset (12 bits)

x86-64 64-bit Virtual Address

Physical page # (40 bits) Offset (12 bits)

x86-64 52-bit Physical Address

x86-64 with 4KB pages has 36-bit virtual page numbers and 40-bit physical page numbers.

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

60

Each Process Has A Page Map

Process A Virtual Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address SpaceCode0

∞

Data

Stack

Process B Virtual Address Space

Physical page # WR? PR?

12 3 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 2 1 1

3 9 0 1

2 1 0 1

1 7 0 1

0 5 0 1

Physical page # WR? PR?

12 10 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 8 1 1

0 12 0 1

61

Paging
How do we provide memory to a process?
• Keep a global free list of physical pages – grab the first one when we need one
• Update process page table for a virtual page to map to this physical page

In this way, we can represent a process’s segments (e.g. code, data) as a
collection of 1 or more pages, starting on any page boundary.

62

Requesting More Memory

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

63

Requesting More Memory

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

64

Paging
Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).
• A “page” of virtual memory maps to a “page” of physical memory. No partial

pages. No more external fragmentation! (but some internal fragmentation if
not all of a page is used).
• The page number is a numerical ID for a page. We have virtual page numbers

and physical page numbers.
• Each process has a page map (“page table”) with an entry for each virtual

page, mapping it to a physical page number and other info such as a protection
bit (read-only or read-write).
• A memory address can tell us the page number and offset within that page.

65

Paging
On each memory reference:
• Look up info for that virtual page in the page map
• If it’s a valid virtual page number, get the physical page number it maps to, and

combine it with the specified offset to produce the physical address.

Problem: what about invalid page numbers? I.e. how do we know/represent
which pages are valid or invalid?
Solution: have entries in the page map for all pages, including invalid ones. Add
an additional field marking whether it’s valid (“present”).

66

Recap
• Recap: virtual memory and dynamic

address translation
• Approach #2: Multiple Segments
• Approach #3: Paging

Next time: demand paging

Lecture 22 takeaway:
Dynamic Address translation
means that the OS intercepts
and translates each memory
access. Initial approaches to
this include base+bound per
process, or expanding that to
be base+bound per variable-
length segment, or instead
dividing into fixed-size pages.

