
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 23
Demand Paging

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 9

2

CS111 Topic 4: Virtual Memory

Virtual
Memory

Introduction

Dynamic
Address

Translation

Demand
Paging

The Clock
Algorithm

Lecture 21 Lecture 22 Lecture 24

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

Today

Virtual Memory - How can one set of memory be shared among several processes?
How can the operating system manage access to a limited amount of system
memory?

3

Learning Goals
• Learn about page maps and how they help translate virtual addresses to

physical addresses
• Understand how paging allows us to swap memory contents to disk when we

need more physical pages.
• Learn about the benefits of demand paging in making memory look larger than

it really is

4

Plan For Today
• Recap: Base and bound, multiple segments, and paging
• Page Map Size
• Demand Paging

5

Plan For Today
• Recap: Base and bound, multiple segments, and paging
• Page Map Size
• Demand Paging

6

Dynamic Address Translation
Key question: how do the MMU / OS translate from virtual addresses to physical
ones? Three designs we’ll consider:
1. Base and bound
2. Multiple Segments
3. Paging

7

Approach #2: Multiple Segments
Key Idea: Each process is split among several variable-size areas of memory,
called segments.
• E.g. one segment for code, one segment for data/heap, one segment for stack.
• The OS maps each segment individually – each segment would have its own

base and bound, and these are stored in a segment map for that process
• We can also store a protection bit for each segment; whether the process is

allowed to write to it or not in addition to reading
• Now each segment can have its own permissions, grow/shrink independently,

be swapped to disk independently, be moved independently, and even be
shared between processes (e.g. shared code).
• Top bit(s) of virtual address encode segment number, rest encode offset

8

Multiple Segments

Process A Virtual Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address SpaceProcess B Virtual Address Space

Code
0

∞

Data

Stack

Multiple Segments

9

Multiple Segments – Changing A Bound

Process A Virtual
Address Space

Code
0

Data

Stack

0

∞

Physical Address Space

data
bound

Process A data base

stack
bound • Buffer space between stack +

heap doesn’t need to be initially
mapped.

• Growing a segment upwards
works well for the heap, but not
for the stack, for the same reason
as base and bound: we can’t
move existing stack data after the
program starts.

• Still fragmentation problem, plus
need to decide # bits for segment
number vs. offset.

10

Paging
Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).
• A “page” of virtual memory maps to a “page” of physical memory. No partial

pages. No more external fragmentation! (but some internal fragmentation if
not all of a page is used).
• The page number is a numerical ID for a page. We have virtual page numbers

and physical page numbers.
• Each process has a page map (“page table”) with an entry for each virtual

page, mapping it to a physical page number and other info such as a protection
bit (read-only or read-write).
• A memory address can tell us the page number and offset within that page.

11

Paging

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

• Do not need to map each
segment contiguously. Instead,
we map just one page at a time.

• We can later map more pages
either up or down, because the
start of the segment is not
pinned to a physical address.

• We can move each page
separately in physical memory by
modifying the page map.

12

Paging

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

13

Paging

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

14

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

??? ???

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 ???

15

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address Physical Address

Virtual page # Physical page #Offset Offset

0x3400

??? ???

???

16

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342

Physical Address

Virtual page # Physical page #Offset Offset

0x3400

???

???

17

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342 0x400

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 ???

18

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342 0x400

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 0x2342400

19

Paging
On each memory reference:
• Look up info for that virtual page in the page map
• If it’s a valid virtual page number, get the physical page number it maps to, and

combine it with the specified offset to produce the physical address.

Problem: what about invalid page numbers? I.e. how do we know/represent
which pages are valid or invalid?

20

Plan For Today
• Recap: Base and bound, multiple segments, and paging
• Page Map Size
• Demand Paging

21

Paging
Problem: what about invalid page numbers? I.e. how do we know/represent
which pages are valid or invalid?
Solution: have entries in the page map for all pages, including invalid ones. Add
an additional field marking whether it’s valid (“present”).

22

Page Map

Index Physical page # Writeable? Present?
… … … …
3 0x2342 1 1
2 XXX X 0
1 0x13241 0 1
0 XXX X 0

23

Page Map

Index Physical page # Writeable? Present?
… … … …
3 0x2342 1 1
2 XXX X 0
1 0x13241 0 1
0 XXX X 0

If there is a memory access in virtual pages 0 or 2 here, it
would trap due to an invalid memory reference.

24

Page Map Size
Problem: how big is a single process’s page map? An entry for every page?
Example with x86-64: 36-bit virtual page numbers, 8-byte map entries

How many possible virtual page #s? 236

236 virtual pages x 8 bytes per page entry = ???

25

Page Map Size
Problem: how big is a single process’s page map? An entry for every page?
Example with x86-64: 36-bit virtual page numbers, 8-byte map entries

How many possible virtual page #s? 236

236 virtual pages x 8 bytes per page entry = 512GB!! (239 bytes)

Plus, most processes are small, so most pages will be “not present”. And even
large processes use their address space sparsely (e.g. code at bottom, stack at
top).

26

Page Map Size
x86-64 solution: represent the page map as a multi-level tree.
• Top level of page map has entries for ranges of virtual pages (0 to 227-1), 227 to

254 – 1, etc.). Only if any pages in that range are present does that entry point
to a lower level in the tree (saves space).
• Lower levels follow a similar structure – entry for ranges of pages, and they

only map to something if at least one of the pages in that range is present.
• The lowest level of the tree contains actual physical page numbers.

28

assign6
On assign6, you’ll implement your own virtual memory system using paging:
• You’ll intercept memory requests
• You’ll maintain a page map mapping virtual addresses to physical ones
• For our purposes, we won’t worry about page map size (will store it without

using tree structure)

29

Plan For Today
• Recap: Base and bound, multiple segments, and paging
• Page Map Size
• Demand Paging

30

What should we do if we run
out of physical memory?

31

Running Out Of Memory
If memory is in high demand, we could fill up all of memory, since a process
needs all its pages in memory to run. What should we do in that case?
• Prohibit further program memory requests until some is freed? Not ideal.
• Another idea – what if we kicked out a page and used that page? We could

save a page to disk, use the page for new data, and load the old data back in to
a physical page later if it’s still needed.

We can make physical memory look larger than it is!

32

Demand Paging
Overall goal: allow programs to run without all their information in memory.
• Keep in memory the information that is being used.
• Keep unused information on disk in paging file (also called backing store, or

swap space)
• Move information back and forth as needed.
• Locality – most programs spend most of their time using a small fraction of

their code and data

Ideally: we have a memory system with the performance of main memory and
the cost/capacity of disk!

33

Demand Paging – 2 Key Questions
1. What is the process for kicking a page out to disk?
2. How do we choose which page to kick out? (next time!)

34

Demand Paging – 2 Key Questions
1. What is the process for kicking a page out to disk?
2. How do we choose which page to kick out? (next time!)

35

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 X X 0

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 1

37

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 X X 0

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 1

1. Pick an existing
physical page and swap
it to disk.

38

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 X X 0

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

1. Pick an existing
physical page and swap
it to disk, mark not
present.

Disk Swap
Space

Process A, vpage #0

39

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

2. Map this physical
page to the new virtual
page.

Disk Swap
Space

Process A, vpage #0

40

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

1. We look in the page
map and see it’s not
present.

Disk Swap
Space

Process A, vpage #0

41

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

2. But it is stored in disk
swap, so we load it back
in (kicking another page if
needed).

Disk Swap
Space

Process A, vpage #0

42

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 0

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

2. But it is stored in disk
swap, so we load it back
in (kicking another page if
needed).

Disk Swap
Space

Process A, vpage #0

Process A, vpage #7

43

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 0

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 0 0 1

2. But it is stored in disk
swap, so we load it back
in (kicking another page if
needed).

Disk Swap
Space

Process A, vpage #7

44

Demand Paging
If we need another page but memory is full:
1. Pick a page to kick out
2. Write it to disk
3. Mark the old page map entry as not present
4. Update the new page map entry to be present and map to this physical page

45

Demand Paging
If the program accesses a page that was swapped to disk:
1. Triggers a page fault (not-present page accessed)
2. We see disk swap contains data for this page
3. Get a new physical page (perhaps kicking out another one)
4. Load the data from disk into that page
5. Update the page map with this new mapping

46

Thrashing
Demand paging can provide big benefits – but what potential scenario would
lead demand paging to slow the system way down, where it is spending all its
time swapping pages and no time doing useful work?

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

47

48

Thrashing
Demand paging can provide big benefits – but what potential scenario would
lead demand paging to slow the system way down?

If the pages being actively used don’t all fit in memory, the system will spend all
its time reading and writing pages to/from disk and won’t get much work done.
• Called thrashing
• The page we kick to disk will be needed very soon, so we will bring it back and

kick another page, which will be needed very soon, etc….
• Progress of the program will make it look like access time of memory is as slow

as disk, rather than disk being as fast as memory. L
• With personal computers, users can notice thrashing and kill some processes

49

Page Fetching
Now we have a mechanism to allow programs to run without all their
information in memory. But even if there is space, when should we bring pages
into memory?
• Most modern OSes start with no pages loaded, load pages when referenced

(“demand fetching”).
• Alternative: prefetching - try to predict when pages will be needed and load

them ahead of time (requires predicting the future…)

50

Demand Paging Behaviors
• We don’t always need to write a swapped-out page to disk (e.g., read-only

code pages can always be loaded from executable)
• A page may have initial data even if it’s never been accessed before (e.g.,

initialized global variables at program start.)

51

Kinds of Pages
The pages for a process divide into three groups:
1. Read-only code pages: program code, doesn’t change

A. no need to store in swap when kicked out; can always read them from executable file
B. on first access, the program expects them to contain data

2. Initialized data pages: program data with initial values (e.g., globals)
A. save to swap since contents may have changed from initial values
B. on first access, the program expects them to contain data

3. Uninitialized data pages: e.g., stack, heap
A. save to swap as needed
B. no set initial contents – on first access, just clear memory to all zeros

52

Assign6 Disk Swap
On assign6:
• You’ll only write to disk if a page is “dirty” (modified). Page maps contain a

dirty bit that is set whenever a page is modified.
• A page may have contents on disk from the executable or from a previous

swap – you’ll read into memory in both cases.

53

Page Replacement
If we need another physical page but all memory is used, which page should we
throw out?

More next time…

54

Recap
• Recap: Base and bound, multiple

segments, and paging
• Page Map Size
• Demand Paging

Next time: how to choose which
pages to swap to disk (the clock
algorithm).

Lecture 23 takeaway: We
can make memory appear
larger than it is by swapping
pages to disk when we need
more space and swapping
them back later. But
thrashing can occur when the
system spends all its time
doing disk operations and
little time on actual work.

