
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 24
The Clock Algorithm

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 9

2

CS111 Topic 4: Virtual Memory

Virtual
Memory

Introduction

Dynamic
Address

Translation

Demand
Paging

The Clock
Algorithm

Lecture 21 Lecture 22 Today

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

Lecture 23

Virtual Memory - How can one set of memory be shared among several processes?
How can the operating system manage access to a limited amount of system
memory?

3

Learning Goals
• Learn about tradeoffs in approaches for choosing pages to kick out of memory
• Walk through the implementation of the clock algorithm, one algorithm for

choosing which page to throw out

4

Plan For Today
• Recap: Demand Paging
• The Clock Algorithm
• What about when the OS Runs?
• Virtual Memory summary

5

Plan For Today
• Recap: Demand Paging
• The Clock Algorithm
• What about when the OS runs?
• Virtual Memory summary

6

Demand Paging
If memory is in high demand, we could fill up all of memory, since a process
needs all its pages in memory to run. What should we do in that case?
• Prohibit further program memory requests? Not ideal.
• Another idea – what if we kicked out a page and used that page? We could

save a page to disk, use the page for new data, and load the old data back in to
a physical page later if it’s still needed.

Overall goal: make physical memory look larger than it is.

7

Demand Paging
If we need another page but memory is full:
1. Pick a page to kick out
2. Write it to disk
3. Mark the old page map entry as not present
4. Update the new page map entry to be present and map to this physical page

8

Demand Paging
If the program accesses a page that was swapped to disk:
1. Triggers a page fault (not-present page accessed)
2. We see disk swap contains data for this page
3. Get a new physical page (perhaps kicking out another one)
4. Load the data from disk into that page
5. Update the page map with this new mapping

9

Thrashing
Demand paging can provide big benefits – but we can encounter thrashing;
when the pages being actively used don’t all fit in memory, and the system will
spend all its time reading and writing pages to/from disk and won’t get much
work done.
• The page we kick to disk will be needed very soon, so we will bring it back and

kick another page, which will be needed very soon, etc….
• Progress of the program will make it look like access time of memory is as slow

as disk, rather than disks being as fast as memory. L
• With personal computers, users can notice thrashing and kill some processes

10

Page Fetching
Now we have a mechanism to allow programs to run without all their
information in memory. But even if there is space, when should we bring pages
into memory?
• Most modern OSes start with no pages loaded, load pages when referenced

(“demand fetching”).
• Alternative: prefetching - try to predict when pages will be needed and load

them ahead of time (requires predicting the future…)

11

Kinds of Pages
The pages for a process divide into three groups:
1. Read-only code pages: program code, doesn’t change

A. no need to store in swap when kicked out; can always read them from executable file
B. on first access, the program expects them to contain data

2. Initialized data pages: program data with initial values (e.g., globals)
A. save to swap since contents may have changed from initial values
B. on first access, the program expects them to contain data

3. Uninitialized data pages: e.g., stack, heap
A. save to swap as needed
B. no set initial contents – on first access, just clear memory to all zeros

12

Today: if we need to kick out a
page, which one do we pick?

13

Plan For Today
• Recap: Demand Paging
• The Clock Algorithm
• What about when the OS runs?
• Virtual Memory summary

14

Page Replacement
If we need another physical page but all memory is used, which page should we
throw out? How do we pick?
• Random? (works surprisingly well!)
• FIFO? (throw out page that’s been in memory the longest) – fairness
• Would be nice if we could pick page whose next access is farthest in the future,

but we’d need to predict the future…
• LRU (least-recently-used)? Replace page that was accessed the longest time

ago.

15

Page Replacement
If we need another physical page but all memory is used, which page should we
throw out? How do we pick?
• Random? (works surprisingly well!)
• FIFO? (throw out page that’s been in memory the longest) – fairness
• Would be nice if we could pick page whose next access is farthest in the future,

but we’d need to predict the future…
• LRU (least-recently-used)? Replace page that was accessed the longest time

ago.

16

Least-Recently-Used
How could we know which page was the least-recently used?
• Store clock time for each page on each reference?
• Scan all pages to find oldest one?

Alternative: just find an old page, not necessarily the oldest.
The clock algorithm is one implementation of this idea.

Clock algorithm key idea: rotate through pages until we find one that hasn’t
been referenced since the last time we checked it. (“second chance algorithm”)

17

Clock Algorithm

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 1

0 A 0 1 1

“reference” bit

Page Map

New reference bit tracks whether a page
has been referenced recently.
• Set to 1 whenever that page is read or

written
• Set to 0 by clock algorithm if it considered

kicking it out, but will instead circle back
again next time

The clock algorithm cycles through pages
(looping back around over time) until it
chooses a page to kick out.

18

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 1

0 A 0 1 1

“reference” bit

Physical Pages Page Map

Let’s say the system looks as
follows, and a program

requests mapping page 5,
but we have no more

physical pages. This triggers
the clock algorithm.

19

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 1

0 A 0 1 1

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“We’ll leave this page
for now – but if we
come back and it’s
still unused, we’ll kick
it out.”

“reference” bit

Physical Pages Page Map

20

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 1

0 A 0 1 1

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

21

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 1

0 A 0 1 0

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

22

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 1

0 A 0 1 0

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

23

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 0

0 A 0 1 0

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

24

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 0

0 A 0 1 0

Was this page accessed
recently (reference = 1)?
If not, this is the one we

should remove.

“This page hasn’t
been used ‘recently’ -
let’s remove it.

“reference” bit

Physical Pages Page Map

25

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 0

0 A 0 1 0

“reference” bit

Physical Pages Page Map

Was this page accessed
recently (reference = 1)?
If not, this is the one we

should remove.

“This page hasn’t
been used ‘recently’ -
let’s remove it.

26

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 0

0 A 0 1 0

Now the clock algorithm
stops, and we remember
the position of the hand

for next time it runs.

“reference” bit

Physical Pages Page Map

27

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 0

0 A 0 1 0

In the meantime, the
program resumes running,
and a long time could pass
between runs of the clock

algorithm. During that
time, pages could be
accessed, meaning

reference bits may change.

“reference” bit

Physical Pages Page Map

28

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

“reference” bit

Physical Pages Page Map

In the meantime, the
program resumes running,
and a long time could pass
between runs of the clock

algorithm. During that
time, pages could be
accessed, meaning

reference bits may change.

29

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

Let’s say the program now
requests mapping page 4.

“reference” bit

Physical Pages Page Map

30

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

31

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 0

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

32

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 0

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

Clock Algorithm

A

B

C

D

E

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

33

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

Clock Algorithm

A

B

C

D

E

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

34

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

Clock Algorithm

A

B

C

D

E

Was this page accessed
recently (reference = 1)?
If not, this is the one we

should remove.

“reference” bit

Physical Pages Page Map

“This page hasn’t
been used ‘recently’ -
let’s remove it.

35

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 C 1 1 1

4 A 1 1 1

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 X X 0 X

“reference” bit

Physical Pages Page Map

Was this page accessed
recently (reference = 1)?
If not, this is the one we

should remove.

“This page hasn’t
been used ‘recently’ -
let’s remove it.

36

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 C 1 1 1

4 A 1 1 1

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 X X 0 X

Now the clock algorithm
stops, and we remember
the position of the hand

for next time it runs.

“reference” bit

Physical Pages Page Map

37

Clock Algorithm
• We add a reference bit: set whenever a page is read or written

• Set to 1 whenever that page is read or written
• Set to 0 if clock algorithm considers kicking it out, but instead circles back again later

• When physical memory is full and we need to choose a page to remove, run
the clock algorithm.
• Clock hand “sweeps” over pages, rotating back to start if reaching the end.
• Every time the hand visits a page, we ask: “Has this page been referenced since

the last time the clock hand swept over it?”
• If YES (reference = 1): mark it as not referenced, and advance clock hand
• If NO (reference = 0): choose it for removal, advance clock hand, stop clock algorithm

• The clock hand position is saved for the next time the algorithm runs
• “Second chance” algorithm – reference bit = “# of free passes left”

38

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 C 1 1 1

4 A 1 1 1

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 X X 0 X

Let’s say we have a new
setup, and the clock hand
starts at C. Which page
will the clock algorithm

choose to reuse when run
next?

“reference” bit

Physical Pages Page Map

Respond on PollEv:
pollev.com/cs111 or text
CS111 to 22333 once to join.

39

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 C 1 1 1

4 A 1 1 1

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 X X 0 X

“reference” bit

Physical Pages Page Map

Let’s say we have a new
setup, and the clock hand
starts at C. Which page
will the clock algorithm

choose to reuse when run
next?

40

43

Page Replacement
How does page replacement work if there are multiple processes running?
• Per-process replacement: each process has separate pool of physical pages,

and a page fault in a process can only replace one of its own pages. But how
many physical pages should each process get?
• Global replacement (most common): all pages from all processes in single

replacement pool. A page fault in one process can kick out a page in another
process.

44

Plan For Today
• Recap: Demand Paging
• The Clock Algorithm
• What about when the OS runs?
• Virtual Memory summary

45

OS Execution
How does virtual memory work when the OS runs?
Challenge: whenever a process makes a system call, any address parameters are
virtual addresses, and the OS may need to access data from the process’s virtual
address space.

• One option: the OS runs “unmapped” - it works directly with physical memory
(no virtual->physical mappings). But then it must do any virtual address
translations itself in software.
• Another (most common in modern systems) option: the OS runs mapped in

every process’s virtual address space. Then it piggybacks on automatic MMU
translation.

46

OS and User in Same Address Space

0

∞
Operating
System

Code

Data

Stack

Process 1

Operating
System

Code

Data

Stack

Process 2

OS in all
Address
Spaces

47

OS Execution
How does virtual memory work when the OS runs?
OS has space in every process’s virtual address space. Not a duplicate of OS;
every virtual space could map to same physical memory.

Problem: don’t want user program accessing OS pages.
Solution: new bit in page table that marks kernel-only pages. When in user
mode, not accessible, but accessible when OS is running.

48

Plan For Today
• Recap: Demand Paging
• More Demand Paging Details
• The Clock Algorithm
• What about when the OS runs?
• Virtual Memory summary

49

Virtual Memory
• Virtual memory is an example of “OS magic” – very powerful mechanism
• Virtualization: making one thing look like another – separation between

appearance and reality
• OS can manage physical memory how it wants (e.g. swap to disk), invisible to

user programs
Goals:
• Multitasking – allow multiple processes to be memory-resident at once
• Transparency – no process should need to know memory is shared. Each

must run regardless of the number and/or locations of processes in memory.
• Isolation – processes must not be able to corrupt each other
• Efficiency (both of CPU and memory) – shouldn’t be degraded badly by sharing

50

CS111 Topic 4: Virtual Memory
Virtual Memory - How can one set of memory be shared among several
processes? How can the operating system manage access to a limited amount of
system memory?

Why is answering this question important?
• We can understand one of the most “magical” responsibilities of OSes –

making one set of memory appear as several!
• Exposes challenges of allowing multiple processes to share memory while

remaining isolated
• Allows us to understand exactly what happens when a program accesses a

memory address
assign6: implement paging/demand paging system to translate addresses and
load/store memory contents for programs as needed.

51

Recap
• Recap: Demand Paging
• The Clock Algorithm
• What about when the OS runs?
• Virtual Memory summary

Lecture 24 takeaway: There
are many different policies to
choose a page to kick out
when memory is full. The
clock algorithm is one
approximation of LRU to pick
an old page to remove.

