
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 3
Unix V6 Filesystem

2

Announcements
• Lecture credit starts with today’s lecture – you can submit PollEV polls in person during live

lecture, or complete the corresponding Canvas quiz by Wed 1PM, to get credit.
• Assign0 due Tuesday at 11:59PM, no late submissions accepted (except for OAE/Head TA

extensions)
• Assignments preview: assign1 and assign3 are longer than 0 and 2

3

CS111 Topic 1: Filesystems

Filesystems
introduction and

design

Case study: Unix
V6 Filesystem

Filesystem
System calls and
file descriptors

Crash recovery

Lecture 2 Today / Lecture 4 Lecture 5 Lectures 6-7

assign1: implement portions of the Unix v6 filesystem!

Key Question: How can we design filesystems to manage files on disk, and what are
the tradeoffs inherent in designing them? How can we interact with the filesystem in
our programs?

4

Learning Goals
• Explore the design of the Unix V6 filesystem
• Understand how we can use inodes to store and access file data
• Learn about how inodes can accommodate small and large files

5

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing
• Assignment 1

6

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing
• Assignment 1

7

Recap: Filesystems So Far
A filesystem is the portion of the OS that manages the disk (persistent storage).
The disk only knows how to read a sector and write a sector.
• Blocks are the storage unit used by the filesystem, can be 1 or more sectors.
Designs we’ve discussed so far:
• Contiguous allocation allocates a file in one contiguous space
• Linked files allocates files by splitting them into blocks and having each block

store the location of the next block.
• Windows FAT is like linked files but stores the links in a “file allocation table” in

memory for faster access.
• Multi-level indexes instead store all block numbers for a file together so we can

quickly jump to any point in the file (but how?). Example: Unix v6 Filesystem
• Many other designs possible – many use a tree-like structure

8

Filesystem Designs
• Internal Fragmentation: space allocated for a file is larger than what is

needed. A file may not take up all the space in the blocks it’s using. E.g. block
= 512 bytes, but file is only 300 bytes. (you could share blocks between
multiple files, but this gets complex)
• External Fragmentation (issue with contiguous allocation): no single space is

large enough to satisfy an allocation request, even though enough aggregate
free disk space is available
• Wait, how do we look up / find files? (we’ll talk more about this!)

9

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing
• Assignment 1

10

Unix V6 Inodes

• An inode ("index node") is a grouping of data about a single file.
• The Unix v6 filesystem stores inodes on disk together in a fixed-size inode table.

Each inode lives on disk, but we can read one into memory when a file is open.
• The inode table starts at block 2 (block 0 is "boot block" containing hard drive

info, block 1 is "superblock" containing filesystem info). The inode table can span
many blocks. Typically, at most 10% of the drive stores metadata.
• Inodes are 32 bytes big, and 1 block = 1 sector = 512 bytes, so 16 inodes/block.
• Filesystem goes from filename to inode number ("inumber") to file data.

11

Unix V6 Inodes

struct inode {
 uint16_t i_mode; // bit vector of file
 // type and permissions
 uint8_t i_nlink; // number of references
 // to file
 uint8_t i_uid; // owner
 uint8_t i_gid; // group of owner
 uint8_t i_size0; // most significant byte
 // of size
 uint16_t i_size1; // lower two bytes of size
 // (size is encoded in a
 // three-byte number)
 uint16_t i_addr[8]; // device addresses
 // constituting file
 uint16_t i_atime[2]; // access time
 uint16_t i_mtime[2]; // modify time
};

For now, we just need
i_addr; an array of 8 block
numbers. i_addr entries are
in file data order, not
necessarily numerical order
- the blocks could be
scattered all over disk. E.g.
a file could have i_addr =
[12, 200, 56, …]. It uses
only as many i_addr entries
as needed to store file data.

Each inode stores file information and has space for 8 block numbers.

12

Unix V6 Inodes
Let's imagine that the hard disk creators provide software to let us
interface with the disk.

void readSector(size_t sectorNumber, void *data);
void writeSector(size_t sectorNumber, const void *data);

(Refresher: size_t is an unsigned number, void * is a generic pointer)

How can we get the first 16 inodes from disk?

13

Reading First 16 Inodes From Disk
char buf[DISKIMG_SECTOR_SIZE];
readSector(2, buf); // always reads in 512 bytes

// now buf is filled with 512 bytes from block 2
// but it’s an array of chars…

14

A Better Way
struct inode {
uint16_t i_addr[8]; // block numbers
...

};

...

int inodesPerBlock = DISKIMG_SECTOR_SIZE / sizeof(struct inode);
struct inode inodes[inodesPerBlock];
readSector(2, inodes);

// Loop over each inode in sector 2
for (size_t i = 0; i < inodesPerBlock; i++) {

printf("%d\n", inodes[i].i_addr[0]); // print first block num
}

15

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing

16

File Data
(For now) i_addr stores the numbers of blocks that contain payload data.

index 0 1 2 3 4 5 6 7

i_addr 341 33 124 … … … … …

File
Part 0

Block 341

File
Part 1

Block 33

File
Part 2

Block 124 To know how many of
the 8 numbers are
used, we can look at the
size stored in the inode.

17

Practice #1: File Data
Let's say we have an inode that looks like the following (remember 1 block = 1
sector = 512 bytes):

Inode:
size = 600 bytes
i_addr = [122, 56, ….]

• How many bytes of block 122 store file payload data?
• How many bytes of block 56 store file payload data?
Bytes 0-511 (512 bytes) reside within block 122, bytes 512-599 (88 bytes) within
block 56.

18

Practice #2: File Data
Let's say we have an inode that looks like the following (remember 1 block = 1
sector = 512 bytes):

Inode:
size = 2000 bytes
i_addr = [56, 122, 45, 22, …]

Which block number stores the index-1500th byte (0-indexed) of the file?

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

19

20

Practice #2: File Data
Let's say we have an inode that looks like the following (remember 1 block = 1
sector = 512 bytes):

Inode:
size = 2000 bytes
i_addr = [56, 122, 45, 22, …]

Which block number stores the index-1500th byte (0-indexed) of the file?
Bytes 0-511 reside within block 56, bytes 512-1023 within block 122, bytes
1024-1535 within block 45, and bytes 1536-1999 at the front of block 22.

21

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing
• Assignment 1

22

File Size
Problem: with 8 block numbers per inode, the largest a file can be is 512 * 8 =
4096 bytes (~4KB). That definitely isn't realistic!

Assuming that the size of an inode is fixed, what can we do?

Solution: Unix V6 has two inode “modes”: small and large, that dictate how it
uses i_addr.

if ((inode.i_mode & ILARG) != 0) { // inode is “large mode”
A “small mode” inode is what we have seen already. But what is a ”large mode”
inode?

23

“Large Mode” Inodes
Let’s say a file’s data is stored across 300 blocks:
126, 98, 77, 127, 1252, 377, 81, 48, 198, 409, 150, 105, 110, 143, 338, 382, 173,
149, 178, 423…

Key idea: the inode only fits 8. So let's store each group of 256 (512 / 2-byte-
numbers) block numbers in a block, and then store that block's number in the
inode! This approach is called singly-indirect addressing.

24

Singly-Indirect Addressing
If the inode is “large mode”, i_addr stores 7 numbers of blocks that contain
block numbers, and those block numbers are of blocks that contain payload
data. 8th block number? we'll get to that :)

0 1 2 3 4 5 6 7

i_addr 444 22 … … … … … ???

126, 98, 77, 127,
1252, …

Block 444

File Part
0

Block 126

File Part
1

Block 98
1352, 567, 897, …

Block 22

File Part
256

Block 1352

… …

25

“Large Mode” Inodes
The Unix V6 filesystem uses singly-indirect addressing (blocks that store payload
block numbers) just for “large mode” files.
• check flag in inode to know whether it is a “small mode” file (direct

addressing) or “large mode” one (indirect addressing)
• If small: all 8 block numbers are direct block numbers (block numbers of

blocks that store file data)
• If large: first 7 block numbers are singly-indirect block numbers (block

numbers of blocks that store direct block numbers), and 8th is TBD J

26

Indirect Addressing
Let's assume for now that an inode for a large file uses all 8 block numbers for
singly-indirect addressing. What is the largest file size this supports? Each block
number is 2 bytes big.

8 block numbers in an inode x
256 block numbers per singly-indirect block x
512 bytes per block
= ~1MB

27

Indirect Addressing: Design Decisions
We could use singly-indirect addressing in other ways, too – all design decisions!
• We could make just some of the block numbers in an inode use singly-indirect

addressing, and others still be direct addressing
• We could have just one “mode” for files, instead of 2
One argument against indirect addressing: it takes more steps to get to the data
and uses more blocks.

451, 42, 15,
67, 125, 665,

467, 231,
162,136

Block 422

The quick
brown fox

jumped over
the...

Block 451

28

Practice: Indirect Addressing
Let's say we have a “large mode” inode with the following information
(remember 1 block = 1 sector = 512 bytes, and block numbers are 2 bytes big):
Inode:
size = 200,000 bytes
i_addr = [56, 122, …]

Which singly-indirect block stores the block number holding the index-
150,000th byte of the file?

Bytes 0-131,071 reside within blocks whose block numbers are in block 56. Bytes
131,072 (256*512) - 199,999 reside within blocks whose block numbers are in
block 122.

29

Even Larger Files
Problem: even with singly-indirect addressing, the largest a file can be is 8 * 256
* 512 = 1,048,576 bytes (~1MB). That still isn't realistic!

Solution: let’s have the 8th entry in i_addr use doubly-indirect addressing; store
a block number for a block that contains singly-indirect block numbers.

30

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing
• Assignment 1

31

Large File Scheme
If the file is large, the first 7 entries in i_addr are singly-indirect block numbers
(block numbers of blocks that contain direct block numbers). The 8th entry (if
needed) is a doubly-indirect block number (the number of a block that contains
singly-indirect block numbers).

index 0 1 2 3 4 5 6 7

i_addr 444 22 34 792 168 976 2467 555

126, 98, 70, 127,
1252, …

Block 444

File Part
0

Block 126
1352, 567, …

Block 555

File Part
1,792

Block 897

… …
897, 4356, 6791,
…

Block 1352

32

Large File Scheme
Another way to think about it: a file can be represented using at most 7 + 256 =
263 singly-indirect blocks. The numbers of the first seven are stored in the
inode. The numbers of the remaining 256 are stored in a block whose block
number is stored in the inode.

126, 98, 70, 127,
1252, …

Block 444

File Part
0

Block 126
1352, 567, …

Block 555

File Part
1,792

Block 897

… …
897, 4356, 6791,
…

Block 1352

index 0 1 2 3 4 5 6 7

i_addr 444 22 34 792 168 976 2467 555

33

Large File Scheme
An inode for a large file stores 7 singly-indirect block numbers and 1 doubly-
indirect block number. What is the largest file size this supports? Each block
number is 2 bytes big.

(7+256) singly-indirect block numbers total x
256 block numbers per singly-indirect block x
512 bytes per block

= ~34MB

34

Large File Scheme
An inode for a large file stores 7 singly-indirect block numbers and 1 doubly-
indirect block number. What is the largest file size this supports? Each block
number is 2 bytes big.

OR:
(7 * 256 * 512) + (256 * 256 * 512) = ~34MB
(singly indirect) + (doubly indirect)

Better! still not sufficient for today's standards, but perhaps in 1975. Moreover,
since block numbers are 2 bytes, we can number at most 216 = 65,536 blocks,
meaning the entire filesystem can be at most 65,536 * 512 ~ 32MB.

35

“Large Mode” Inodes
The Unix V6 filesystem uses indirect addressing (blocks that store payload block
numbers) just for “large mode” files.
• check flag in inode to know whether it is a “small mode” file (direct

addressing) or “large mode” one (indirect addressing)
• If small: all 8 block numbers are direct block numbers (block numbers of

blocks that store file data)
• If large: first 7 block numbers are singly-indirect block numbers (block

numbers of blocks that store direct block numbers), 8th block number (if
needed) is doubly-indirect (it refers to a block that stores singly-indirect
block numbers)

• Files only use the block numbers they need (depending on their size)
• Note: doubly-indirect is useful (and there are many other possible designs!),

but it means even more steps to access data.

36

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing
• Assignment 1

37

Assignment 1
Implement core functions to read from a Unix v6 filesystem disk!
• inode_iget -> fetch a specific inode
• inode_indexlookup -> fetch a specific payload block number
• file_getblock -> fetch a specified payload block
• directory_findname -> fetch directory entry with the given name
• pathname_lookup -> fetch inumber for the file with the given path

38

Assignment 1
Implement core functions to read from a Unix v6 filesystem disk!
• inode_iget -> fetch a specific inode
• inode_indexlookup -> fetch a specific payload block number
• file_getblock -> fetch a specified payload block
• directory_findname -> fetch directory entry with the given name
• pathname_lookup -> fetch inumber for the file with the given path

will discuss
next time!

can start
immediately

39

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing
• Assignment 1

Next time: directories, file lookup and links

Lecture 3 takeaway: The
Unix v6 filesystem
represents small files by
storing direct block
numbers, and larger files by
using indirect addressing -
storing 7 singly-indirect and
1 doubly-indirect block
number.

