
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 4
Unix V6 Filesystem, Continued

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 13.1-13.2

2

Announcements
Sections start this week! Check the course website for your section assignment.
Bring a laptop with you if you have one.
• Sections rely on material through each Wed. lecture - the work you do in

section will pay dividends when you work on the assignment!
• Checkoff sheet to track participation - section credit is awarded based on your

sincere participation for the full section period
• if you have any section accommodation needs (e.g. illness) or need to attend a

makeup, or have other section-logistics-related questions, please contact your
section TA

3

Topic 1: Filesystems - How can
we design filesystems to manage files
on disk, and what are the tradeoffs
inherent in designing them? How
can we interact with the filesystem in
our programs?

4

CS111 Topic 1: Filesystems

Filesystems
introduction and

design

Case study: Unix
V6 Filesystem

Filesystem
System calls and
file descriptors

Crash recovery

Lecture 2 Lecture 3 / Today Lecture 5 Lectures 6-7

assign1: implement portions of the Unix v6 filesystem!

Key Question: How can we design filesystems to manage files on disk, and what are
the tradeoffs inherent in designing them? How can we interact with the filesystem in
our programs?

5

Learning Goals
• Explore the design of the Unix V6 filesystem
• Understand the design of the Unix v6 filesystem in how it represents

directories
• Practice with the full process of going from file path to file data

6

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup

7

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup

8

Unix V6 Filesystem
Every file has an associated inode. An inode has space for up to 8 block
numbers for file payload data, and this block number space is used differently
depending on whether the file is “small mode” or “large mode”

if ((inode.i_mode & ILARG) != 0) { // file is “large mode”

9

Small File Scheme
If the file is small, i_addr stores direct block numbers: numbers of blocks that
contain payload data.

index 0 1 2 3 4 5 6 7

i_addr 341 33 124 … … … … …

File
Part 0

Block 341

File
Part 1

Block 33

File
Part 2

Block 124 To know how many of
the 8 numbers are
used, we can look at the
size stored in the inode.

10

Large File Scheme
If the file is large, the first 7 entries in i_addr are singly-indirect block numbers
(block numbers of blocks that contain direct block numbers). The 8th entry (if
needed) is a doubly-indirect block number (the number of a block that contains
singly-indirect block numbers).

index 0 1 2 3 4 5 6 7

i_addr 444 22 34 792 168 976 2467 555

126, 98, 70, 127,
1252, …

Block 444

File Part
0

Block 126
1352, 567, …

Block 555

File Part
1,792

Block 897

… …
897, 4356, 6791,
…

Block 1352

11

Large File Scheme
Another way to think about it: a file can be represented using at most 7 + 256 =
263 singly-indirect blocks. The first seven are stored in the inode. The
remaining 256 are stored in a block whose block number is stored in the inode.

126, 98, 70, 127,
1252, …

Block 444

File Part
0

Block 126
1352, 567, …

Block 555

File Part
1,792

Block 897

… …
897, 4356, 6791,
…

Block 1352

index 0 1 2 3 4 5 6 7

i_addr 444 22 34 792 168 976 2467 555

12

Large File Scheme
An inode for a large file stores 7 singly-indirect block numbers and 1 doubly-
indirect block number. What is the largest file size this supports? Each block
number is 2 bytes big.

(7+256) singly-indirect block numbers total x
256 block numbers per singly-indirect block x
512 bytes per block

= ~34MB

13

Large File Scheme
An inode for a large file stores 7 singly-indirect block numbers and 1 doubly-
indirect block number. What is the largest file size this supports? Each block
number is 2 bytes big.

OR:
(7 * 256 * 512) + (256 * 256 * 512) ~ 34MB
(singly indirect) + (doubly indirect)

Better! still not sufficient for today's standards, but perhaps in 1975. Moreover,
since block numbers are 2 bytes, we can number at most 216 - 1 = 65,535 blocks,
meaning the entire filesystem can be at most 65,535 * 512 ~ 32MB.

14

Inodes
• Files only use the block numbers they need (depending on their size)
• Note: doubly-indirect is useful (and there are many other possible designs!),

but it means even more steps to access data.

15

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup

16

Doubly-Indirect Addressing
What is the smallest file size (in bytes) that would require using the doubly-
indirect block to store its data?

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

17

18

Doubly-Indirect Addressing
What is the smallest file size (in bytes) that would require using the doubly-
indirect block to store its data?

Files up to (7 * 256 * 512) bytes are representable using just the 7 singly-
indirect blocks. Files of (7 * 256 * 512) + 1 or more bytes would need the
doubly-indirect block as well.

19

Doubly-Indirect Addressing

Inode 16:
• ”large mode”
• size = 18,855,234
• i_addr = [26,35,32,50,58,22,59,30]

Assume we have a the following inode. How do we find the block containing the
start of its payload data? How about the remainder of its payload data?

Block # … 2 … 26 … 30 … 80 … 87 … 89

Block
contents …

Inode
table
start

…

80,41,82,85,
103, 24,45,…

…

87,114,47,48,
122,99,111,
543,…

…

It was the best
of times, it
was the worst
of times… …

89,448,234,99,
…

…

“My father,”
exclaimed
Lucie, “you
are ill!”…

Step 1: Go to block 26 and read block numbers.
For the first number, 80, go to block 80 and read
the beginning of the file (the first 512 bytes).
Then go to block 41 for the next 512 bytes, etc.

20

Doubly-Indirect Addressing

Inode 16:
• ”large mode”
• size = 18,855,234
• i_addr = [26,35,32,50,58,22,59,30]

Assume we have a the following inode. How do we find the block containing the
start of its payload data? How about the remainder of its payload data?

Block # … 2 … 26 … 30 … 80 … 87 … 89

Block
contents …

Inode
table
start

…

80,41,82,85,
103, 24,45,…

…

87,114,47,48,
122,99,111,
543,…

…

It was the best
of times, it
was the worst
of times… …

89,448,234,99,
…

…

“My father,”
exclaimed
Lucie, “you
are ill!”…

Step 2: After 256 blocks, go to block 35, repeat
the process. Do this a total of 7 times, for blocks
26, 35, 32, 50, 58, 22, and 59, reading 1792
blocks.

21

Doubly-Indirect Addressing

Inode 16:
• ”large mode”
• size = 18,855,234
• i_addr = [26,35,32,50,58,22,59,30]

Assume we have a the following inode. How do we find the block containing the
start of its payload data? How about the remainder of its payload data?

Block # … 2 … 26 … 30 … 80 … 87 … 89

Block
contents …

Inode
table
start

…

80,41,82,85,
103, 24,45,…

…

87,114,47,48,
122,99,111,
543,…

…

It was the best
of times, it
was the worst
of times… …

89,448,234,99,
…

…

“My father,”
exclaimed
Lucie, “you
are ill!”…

Step 3: Go to block 30, which is a doubly-indirect
block. From there, go to block 87, which is a singly-
indirect block, and read all block numbers. Repeat
for remaining singly-indirect block numbers in block
30.

22

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup

23

Now we understand how files
are stored. But how do

we find them?

24

The Directory Hierarchy
Filesystems usually support directories ("folders")
• A directory can contain files and more directories
• A directory is a file container. It needs to store information about what

files/folders are contained within it.
• On Unix/Linux, all files live within the root directory, "/"
• We can specify the location of a file via the path to it from the root directory

(“absolute path”):

/classes/cs111/index.html

Common filesystem task: given a filepath, get the file's contents.

25

Directories
Key idea: Unix V6 directories are what map filenames to inode numbers in the
filesystem. Filenames are not stored in inodes; they are stored in directories.
Thefore, file lookup must happen via directories.

A Unix V6 directory contains an unsorted list of 16 byte “directory entries”. Each
entry contains the name and inode number of one thing in that directory.

struct direntv6 {
 uint16_t d_inumber;
 char d_name[14];
};

23 myfile.txt

54 song.mp3

1245 prez.pptx

…

26

Directories
Unix V6 directories contain lists of 16 byte “directory entries”. Each entry
contains the name and inode number of one thing in that directory.
• The first two bytes are the inumber
• The last 14 bytes are the name (not necessarily null-terminated!)

struct direntv6 {
 uint16_t d_inumber;
 char d_name[14];
};

23 myfile.txt

54 song.mp3

1245 prez.pptx

…

27

How can we use this
directory representation to
translate from a filepath to

its inode number?

28

The Lookup Process

/classes/cs111/index.html

Start at the
root directory

29

The Lookup Process

/classes/cs111/index.html

In the root
directory,
find the
entry named
"classes".

30

The Lookup Process

/classes/cs111/index.html

In the "classes"
directory, find
the entry
named "cs111".

31

The Lookup Process

/classes/cs111/index.html

In the "cs111"
directory, find the
entry named
"index.html". Then
read its contents.

32

Directories
How can we store directories on disk?
• Directories store directory entries – could be many entries
• Directories also have associated metadata (size, permissions, creation date, …)

Key idea: let’s model a directory as a file. We’ll pretend it’s a “file” whose
contents are its directory entries! Each directory will have an inode, too.
Key benefit: we can leverage all the existing logic for how files and inodes work,
no need for extra work or complexity!

• Inodes can store a field telling us whether something is a directory or file.
• Directories can be “small mode” or “large mode”, just like files

33

The Lookup Process
The root directory ("/") is set to have inumber 1. That way we always know
where to go to start traversing. (0 is reserved to mean "NULL" or "no inode").

http://stackoverflow.com/questions/2099121/why-do-inode-numbers-start-from-1-and-not-0

34

The Lookup Process

/classes/cs111/index.html

Go to inode with
inumber 1 (root
directory).

35

The Lookup Process

/classes/cs111/index.html

In its payload data,
look for the entry
“classes” and get
its inumber. Go to
that inode.

36

The Lookup Process

/classes/cs111/index.html

In its payload
data, look for
the entry
“cs111” and get
its inumber. Go
to that inode.

37

The Lookup Process

/classes/cs111/index.html

In its payload data,
look for the entry
“index.html” and get
its inumber. Go to that
inode and read in its
payload data.

38

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup

39

Filename Lookup Practice #1
What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block
contents … Start of inode

table …

. 1

.. 1
local 12
other 10
remote 9

…

. 12

.. 1
file1.txt 4
docs 15
...
("files"
not here)

…

apps 21
files 14

…

. 14

.. 12
story.txt 3
todo.txt 16 …

Once upon a
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 80
i_addr = [24, …]

…

Type: file
Mode: small
Size: 1536
i_addr = [128,
222, 124, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [125, …]

40

Filename Lookup Practice #1
What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block
contents … Start of inode

table …

. 1

.. 1
local 12
other 10
remote 9

…

. 12

.. 1
file1.txt 4
docs 15
...
("files"
not here)

…

apps 21
files 14

…

. 14

.. 12
story.txt 3
todo.txt 16 …

Once upon a
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 80
i_addr = [24, …]

…

Type: file
Mode: small
Size: 1536
i_addr = [128,
222, 124, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [125, …]

41

Filename Lookup Practice #1
What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block
contents … Start of inode

table …

. 1

.. 1
local 12
other 10
remote 9

…

. 12

.. 1
file1.txt 4
docs 15
...
("files"
not here)

…

apps 21
files 14

…

. 14

.. 12
story.txt 3
todo.txt 16 …

Once upon a
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 80
i_addr = [24, …]

…

Type: file
Mode: small
Size: 1536
i_addr = [128,
222, 124, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [125, …]

42

Filename Lookup Practice #1
What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block
contents … Start of inode

table …

. 1

.. 1
local 12
other 10
remote 9

…

. 12

.. 1
file1.txt 4
docs 15
...
("files"
not here)

…

apps 21
files 14

…

. 14

.. 12
story.txt 3
todo.txt 16 …

Once upon a
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 80
i_addr = [24, …]

…

Type: file
Mode: small
Size: 1536
i_addr = [128,
222, 124, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [125, …]

43

Filename Lookup Practice #1
What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block
contents … Start of inode

table …

. 1

.. 1
local 12
other 10
remote 9

…

. 12

.. 1
file1.txt 4
docs 15
...
("files"
not here)

…

apps 21
files 14

…

. 14

.. 12
story.txt 3
todo.txt 16 …

Once upon a
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 80
i_addr = [24, …]

…

Type: file
Mode: small
Size: 1536
i_addr = [128,
222, 124, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [125, …]

44

Filename Lookup Practice #1
What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block
contents … Start of inode

table …

. 1

.. 1
local 12
other 10
remote 9

…

. 12

.. 1
file1.txt 4
docs 15
...
("files"
not here)

…

apps 21
files 14

…

. 14

.. 12
story.txt 3
todo.txt 16 …

Once upon a
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 80
i_addr = [24, …]

…

Type: file
Mode: small
Size: 1536
i_addr = [128,
222, 124, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [125, …]

45

Filename Lookup Practice #1
What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block
contents … Start of inode

table …

. 1

.. 1
local 12
other 10
remote 9

…

. 12

.. 1
file1.txt 4
docs 15
...
("files"
not here)

…

apps 21
files 14

…

. 14

.. 12
story.txt 3
todo.txt 16 …

Once upon a
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 80
i_addr = [24, …]

…

Type: file
Mode: small
Size: 1536
i_addr = [128,
222, 124, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [125, …]

46

Filename Lookup Practice #1
What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block
contents … Start of inode

table …

. 1

.. 1
local 12
other 10
remote 9

…

. 12

.. 1
file1.txt 4
docs 15
...
("files"
not here)

…

apps 21
files 14

…

. 14

.. 12
story.txt 3
todo.txt 16 …

Once upon a
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 80
i_addr = [24, …]

…

Type: file
Mode: small
Size: 1536
i_addr = [128,
222, 124, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [125, …]

47

Filename Lookup Practice #1
What is the inode number for the file with path /local/files/story.txt?

Block # … 2 … 24 … 32 … 41 … 62 … 128

Block
contents … Start of inode

table …

. 1

.. 1
local 12
other 10
remote 9

…

. 12

.. 1
file1.txt 4
docs 15
...
("files"
not here)

…

apps 21
files 14

…

. 14

.. 12
story.txt 3
todo.txt 16 …

Once upon a
time…

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 80
i_addr = [24, …]

…

Type: file
Mode: small
Size: 1536
i_addr = [128,
222, 124, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [125, …]

48

Filename Lookup Practice #2
What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block
contents … Start of inode

table …

. 1

.. 1
bin 13
tmp 10
other 9
usr 3

…

. 3

.. 1
apps 21
files 14
…
("note.txt"
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf 15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir
Mode: large
Size: 131584
i_addr = [122,
545, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [876, …]

49

Filename Lookup Practice #2
What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block
contents … Start of inode

table …

. 1

.. 1
bin 13
tmp 10
other 9
usr 3

…

. 3

.. 1
apps 21
files 14
…
("note.txt"
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf 15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir
Mode: large
Size: 131584
i_addr = [122,
545, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [876, …]

50

Filename Lookup Practice #2
What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block
contents … Start of inode

table …

. 1

.. 1
bin 13
tmp 10
other 9
usr 3

…

. 3

.. 1
apps 21
files 14
…
("note.txt"
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf 15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir
Mode: large
Size: 131584
i_addr = [122,
545, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [876, …]

51

Filename Lookup Practice #2
What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block
contents … Start of inode

table …

. 1

.. 1
bin 13
tmp 10
other 9
usr 3

…

. 3

.. 1
apps 21
files 14
…
("note.txt"
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf 15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir
Mode: large
Size: 131584
i_addr = [122,
545, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [876, …]

52

Filename Lookup Practice #2
What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block
contents … Start of inode

table …

. 1

.. 1
bin 13
tmp 10
other 9
usr 3

…

. 3

.. 1
apps 21
files 14
…
("note.txt"
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf 15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir
Mode: large
Size: 131584
i_addr = [122,
545, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [876, …]

53

Filename Lookup Practice #2
What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block
contents … Start of inode

table …

. 1

.. 1
bin 13
tmp 10
other 9
usr 3

…

. 3

.. 1
apps 21
files 14
…
("note.txt"
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf 15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir
Mode: large
Size: 131584
i_addr = [122,
545, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [876, …]

54

Filename Lookup Practice #2
What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block
contents … Start of inode

table …

. 1

.. 1
bin 13
tmp 10
other 9
usr 3

…

. 3

.. 1
apps 21
files 14
…
("note.txt"
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf 15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir
Mode: large
Size: 131584
i_addr = [122,
545, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [876, …]

55

Filename Lookup Practice #2
What is the inode number for the file with path /usr/note.txt?

Block # … 2 … 56 … 67 … 122 … 421 … 545

Block
contents … Start of inode

table …

. 1

.. 1
bin 13
tmp 10
other 9
usr 3

…

. 3

.. 1
apps 21
files 14
…
("note.txt"
not here)

…

67,421,872,
999,135,346
,…

…

icon.png 30
doc.pdf 15
note.txt 16
… …

565

…

Inode # 1 … 3 … 12 … 14 … 16

Inode
contents

Type: dir
Mode: small
Size: 96
i_addr = [56, …]

…

Type: dir
Mode: large
Size: 131584
i_addr = [122,
545, …]

…

Type: dir
Mode: small
Size: 544
i_addr = [32, 41,
…]

…

Type: dir
Mode: small
Size: 64
i_addr = [62, …]

…

Type: file
Mode: large
Size: 4608
i_addr = [876, …]

56

Unix V6 Filesystem Summary
We built layers on top of the low-level readSector and writeSector to implement
a higher-level filesystem. We encountered several design ideas:
• Modularity –subdivision of a larger system into a collection of smaller

subsystems, which themselves may be further subdivided
• Layering –the organization of several modules that interact in some

hierarchical manner where each layer typically only opens its interface to the
module above it
• Name resolution – system resolves human-friendly names (paths) to machine-

friendly names (inumbers). Names let us refer to system resources.
• Virtualization – making one thing look like another (e.g. disk is just an array of

sectors)

57

Unix V6 Filesystem
The Unix V6 Filesystem is one example of a “multi-level index” filesystem design.
• What are the benefits / drawbacks of the Unix V6 Filesystem design?

Advantages
• Can access all block numbers for a file
• Still supports easy sequential access
• Easy to grow files

58

Unix V6 Filesystem
The Unix V6 Filesystem is one example of a “multi-level index” filesystem design.
• What are the benefits / drawbacks of the Unix V6 Filesystem design?

Disadvantages
• More steps and disk reads to get block data for large files
• More disk space taken up by metadata
• Upper limit on file size (though if larger than disk, doesn’t matter)
• Size change requires restructuring the inode

59

Multi-level Indexes
There are many alternative designs that could be used – some alterations you
could propose might be:
• What if the block size was different?
• What if inodes stored a different number of block numbers?
• What if the file size scheme (small / large) worked differently?

Example: 4.3 BSD Unix filesystem (evolutionary descendent of V6)
• 4Kb block size
• Inodes store 14 block numbers
• First 12 block numbers always direct, 13th always singly indirect, 14th always

doubly indirect (no small vs. large schemes)

60

Other Filesystem Design Ideas
Larger block size? Improves efficiency of I/O and inodes but worsens internal
fragmentation. Generally: challenges with both large and small files coexisting.

One idea: multiple block sizes
• Large blocks are 4KB, fragments are 512 bytes (8 fragments fit in a block)
• The last block in a file can be a fragment (0-7 fragments)
• One large block can hold fragments from multiple files
• Get the time efficiency benefit of larger blocks, but the internal fragmentation

benefit of smaller blocks (small files can use fragments)

61

Filesystem Techniques Today
• Filesystem design is a hard problem! Tradeoffs, challenges with large and small

files.
• Even larger block sizes (16KB large blocks, 2KB fragments) – disk space cheap,

internal fragmentation doesn’t matter as much
• Reallocate files as blocks grow – initially allocate blocks one at a time, but

when a file reaches a certain size, reallocate blocks looking for large contiguous
clusters
• ext4 is a popular current Linux filesystem – you may notice similarities!
• NTFS (replacement for FAT) is the current Windows filesystem
• APFS (“Apple Filesystem”) is the filesystem for Apple devices

https://opensource.com/article/17/5/introduction-ext4-filesystem

62

Assignment 1
Implement core functions to read from a Unix v6 filesystem disk!
• inode_iget -> fetch a specific inode
• inode_indexlookup -> fetch a specific payload block number
• file_getblock -> fetch a specified payload block
• directory_findname -> fetch directory entry with the given name
• pathname_lookup -> fetch inumber for the file with the given path

63

Recap
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup

Next time: how do we interact with the
filesystem in our programs?

Lecture 4 takeaway: The
Unix V6 Filesystem
represents directories as
files, with payloads
containing directory entries.
Lookup begins at the root
directory for absolute paths.

