
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 6
Crash Recovery + Filesystem System Calls

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 14

through 14.1

2

CS111 Topic 1: Filesystems

Filesystems
introduction and

design

Case study: Unix
V6 Filesystem Crash Recovery

Filesystem
System calls and
file descriptors

Lecture 2 Lecture 3-4 Lecture 5/Today Today/Lecture 7

Key Question: How can we design filesystems to manage files on disk, and what are
the tradeoffs inherent in designing them? How can we interact with the filesystem in
our programs?

assign2: implement a program that can repair a filesystem after a crash, and explore
some of the security and ethical implications of OSes / filesystems.

3

Learning Goals
• Understand the write-ahead logging approach to crash recovery
• Compare and contrast different crash recovery approaches
• Become familiar writing programs that read, write and create files

4

Plan For Today
• Recap: Crash Recovery so far
• Approach #3: Write-Ahead Logging (“Journaling”)
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files

5

Plan For Today
• Recap: Crash Recovery so far
• Approach #3: Write-Ahead Logging (“Journaling”)
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files

6

Free List and Block Cache
Filesystems commonly use a bitmap to track free blocks (1 bit / block , 1 = free,
0 = used).
• During allocation, search bit map for block close to previous block in file

• Want locality – data likely used next is close by (linked list not as good)

• To ensure a minimum number of free blocks, we can pretend the disk is fuller
than it actually is (!)

Many OSes have a block cache that stores recently-accessed disk blocks.
• Helps us avoid always having to read a block from disk – check cache first
• “least recently used” one way to manage cache – if full, kick out least recently

used block

7

Crash Recovery
Challenge #1 – data loss: crashes can happen at any time, and not all data might
have been saved to disk.
• E.g. if you saved a file but it hadn’t actually been written to disk yet.
Challenge #2 - inconsistency: Crashes could happen even in the middle of
operations, and this could leave the disk in an inconsistent state.
• E.g. adding block to file: inode was written to store block number, but block

wasn’t marked in the filesystem as used (it’s still listed in the free list)

8

Approach #1: fsck
Idea #1: don’t make any design changes to the filesystem structure to
implement crash recovery. Instead, let’s write a program that runs on bootup to
check the filesystem for consistency and repair any problems it can.

Example: Unix fsck (“file system check”)
• Runs when we reboot after a crash - scan metadata, identify inconsistencies,

repair them, with goal of restoring consistency, minimizing info loss.
• Downsides:

• Time – can’t restart system until fsck completes
• Restores consistency, but other limitations – e.g. can’t prevent info loss, system may be

consistent but unusable (e.g. system files moved to lost+found), security issues
migrating a block to another file

9

Approach #2: Ordered Writes
Idea #2: Make design changes to the filesystem structure to implement crash
recovery. Specifically, prevent certain kinds of inconsistencies by making
updates in a particular order.

In general:
• Always initialize target before initializing new reference (e.g. initialize inode

before adding directory entry to it)
• Never reuse a resource (inode, disk block, etc.) before nullifying all existing

references to it (e.g. adding block to free list)
• To preserve data, never clear last reference to a live resource before setting

new reference, preserving data so you don’t lose it (e.g. moving a file)
Result: eliminate the need to wait for fsck on reboot!

10

Ordered Writes
Downside #1: performance. Forces synchronous metadata writes in the middle
of operations, partially defeating the point of the block cache.
• Example: adding block to file (update free list + inode) – we must write free list

to disk before adding block to inode
• Improvement: instead of synchronous writes, track dependencies in the block

cache for later. Tricky – circular dependencies possible! (A -> B -> C -> A)
Downside #2: can leak resources (e.g. free block removed from free list but
never used)
• Improvement: run fsck in the background to reclaim leaked resources (fsck can

run in background because filesystem is repaired, but resources have leaked)

Can we do better? E.g., can we avoid leaking data?

11

Plan For Today
• Recap: Crash Recovery so far
• Approach #3: Write-Ahead Logging (“Journaling”)
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files

12

Write-Ahead Logging (Journaling)
Let’s keep a “paper trail” of disk operations that we can revisit in the event of a
crash.
• Have an append-only log on disk that stores information about disk operations
• Before performing an operation, record its info in the log, and write that to

disk before doing the operation itself (“write-ahead”)
• E.g. “I am adding block 4267 to inode 27, index 5”

• Then, the actual block updates can be carried out later, in any order
• If a crash occurs, replay the log to make sure all updates are completed on

disk. Thus, we can detect/fix inconsistencies without a full disk scan.

13

Write-Ahead Logging (Journaling)
• Typically we only log metadata operations, not actual file data operations (data

is much more expensive, since much more written to log). Tradeoff!
• Most modern filesystems do some sort of logging (e.g. Windows NTFS) – many

allow choice whether you want data logging or not.
• Logs one of the most important data structures used in systems today

14

assign2 Log Example
[offset 33562846]
* LSN 1838326418

LogBlockAlloc
blockno: 1027
zero_on_replay: 0

[offset 33562862]
* LSN 1838326419

LogPatch
blockno: 8
offset_in_block: 136
bytes: 0304

inode #52 (i_addr[0] = block pointer 1035)

15

Write-Ahead Logging (“Journaling”)
What are the downsides/limitations of our logging design so far?

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

16

17

Write-Ahead Logging (“Journaling”)
Problem: log can get long!
Solution: occasional “checkpoints” – truncate the log occasionally once we
confirm that portion of the log is no longer needed.

Problem: could be multiple log entries for a single “operation” that should
happen atomically.
Solution: have a log mechanism to track “transactions” (atomic operations) and
only replay those if the entire transaction is fully entered into the log. (assign2
wraps each transaction with LogBegin and LogCommit)
Problem: we could replay a log operation that has already happened.
Solution: make all log entries idempotent (doing multiple times has same effect
as doing once). E.g. “append block X to file” (bad) vs. “set block number X to Y”

18

Write-Ahead Logging (“Journaling”)
Problem: log entries must be written synchronously before the operations
Solution: delay writes for log, too (i.e. build log, but don’t write immediately;
when a block cache block is written, write relevant log entries then). Though
this risks losing some log entries.

Logging doesn’t guarantee that everything is preserved, but it does guarantee
that what’s there is consistent (separates durability – data will be preserved –
from consistency – state is consistent)

19

Crash Recovery
Ultimately, tradeoffs between durability, consistency and performance
• E.g. if you want durability, you’re going to have to sacrifice performance
• E.g. if you want highest performance, you’re going to have to give up some

crash recovery capability
• What kinds of failures are most important to recover from, and how much are

you willing to trade off other benefits (e.g. performance)?

Still lingering problems – e.g. disks themselves can fail

20

Crash Recovery
We’ve discussed 3 main approaches to crash recovery:
1. Consistency check on reboot (fsck) – no filesystem changes, run program on

boot to repair whatever we can. But can’t restore everything and may take a
while.

2. Ordered Writes – modify the write operations to always happen in particular
orders, eliminating various kinds of inconsistencies. But requires doing
synchronous writes or tracking dependencies and can leak resources.

3. Write-Ahead Logging – log metadata (and optionally file data) operations
before doing the operations to create a paper trail we can redo in case of a
crash.

21

assign2
• Assign2 tools let you simulate real filesystems, make them crash, and

experiment with recovery tools
• Implement a program that replays a log after a crash
• Mix of filesystem exploration (playing around with simulated filesystems,

viewing logs and filesystem state) and coding (about ~10-15 lines total)
• Also kicks off embedded ethics discussions about OS trust and security
• You’ll have a chance to play with these tools in the assignment and in section

22

Plan For Today
• Recap: Crash Recovery so far
• Approach #3: Write-Ahead Logging (“Journaling”)
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect6 .

23

OS vs. User Mode
• The operating system runs code in a privileged “kernel mode” where it can do

things and access data that regular user programs cannot. E.g. only OS can call
readSector.
• System tracks whether it is in “user mode” or “kernel mode”
• The OS provides public functions that we can call in our user programs –

system calls. When these functions are called, it switches over to “kernel
mode”.

24

System Calls
Functions to interact with the operating system are part of a group of functions
called system calls.
• A system call is a public function provided by the operating system.
• The operating system handles these tasks because they require special

privileges that we do not have in our programs. When a system call runs, it
runs in kernel mode, and we switch back to user mode when it’s done.
• The operating system kernel runs the code for a system call, completely

isolating the system-level interaction from your (potentially harmful) program.
• We are going to examine the system calls for interacting with files. When

writing production code, you will often use higher-level methods that build on
these (like C++ streams or FILE *), but let's see how they work!

25

open()

Call open to open a file:

int open(const char *pathname, int flags);

• pathname: the path to the file you wish to open
• flags: a bitwise OR of options specifying the behavior for opening the file
• returns a file descriptor representing the opened file, or -1 on error

Many possible flags (see manual page for full list). You must include exactly one
of the following flags: O_RDONLY (read-only), O_WRONLY (write-only),
O_RDWR (read and write). These say how you will use the file in this program.
Another useful flag: O_TRUNC means if the file exists already, truncate (clear) it.

26

open()

Call open to open a file:

int open(const char *pathname, int flags, mode_t mode);

You can also create a new file if the specified file doesn’t exist, by including
O_CREAT as one of the flags. You must also specify a third mode parameter.
• mode: the permissions to attempt to set for a created file

27

open()

Call open to open a file:

int open(const char *pathname, int flags, mode_t mode);

You can also create a new file if the specified file doesn’t exist, by including
O_CREAT as one of the flags. You must also specify a third mode parameter.
• mode: the permissions to attempt to set for a created file

Another useful flag: O_EXCL, which says the file must be created from scratch,
and to fail if the file already exists.

Aside: how are there multiple signatures for open in C? See here.

https://stackoverflow.com/questions/15151396/open-system-call-polymorphism

28

File Descriptors
A file descriptor is like a "ticket number" representing your currently-open file.
• It is a unique number assigned by the operating system to refer to that

instance of that file in this program.
• Each program has its own file descriptors
• You can have multiple file descriptors for the same file - every time you call

open, you get a new file descriptor.
• When you wish to refer to the file (e.g. read from it, write to it) you must

provide the file descriptor.
• file descriptors are assigned in ascending order (next FD is lowest unused)
• The OS remembers information associated with each of your file descriptors,

like where in the file you currently are (if reading/writing)

29

close()

Call close to close a file when you’re done with it:

int close(int fd);

• fd: the file descriptor you'd like to close.

It's important to close files when you are done with them to preserve system
resources.
• You can use valgrind to check if you forgot to close any files. (--track-fds=yes)

30

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

touch.c

31

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

Open the
f ile to be

writ ten to

touch.c

32

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

If the f ile
doesn’t

exist, create
it

touch.c

33

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

If it does
exist, throw

an error

touch.c

34

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

If we create a new f ile, it should
have these permissions (don’t

worry about specif ics for now)

touch.c

35

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

touch.c

36

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

touch.c

Specify how
we are going
to use this
f ile in this
program

37

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

touch.c

Specify
permissions

for
everyone on
disk if this
call creates
a new f ile

38

Plan For Today
• Recap: Crash Recovery so far
• Approach #3: Write-Ahead Logging (“Journaling”)
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect6 .

39

read()
Call read to read bytes from an open file:

ssize_t read(int fd, void *buf, size_t count);

• fd: the file descriptor for the file you'd like to read from
• buf: the memory location where the read-in bytes should be put
• count: the number of bytes you wish to read
• returns -1 on error, 0 if at end of file, or nonzero if bytes were read

Key idea: read may not read all the bytes you ask it to! The return value tells you how
many were actually read. (E.g. if there aren’t that many bytes, or if interrupted)
Key idea #2: the operating system keeps track of where in a file a file descriptor is
reading from. So the next time you read, it will resume where you left off.

40

write()
Call write to write bytes to an open file:

ssize_t write(int fd, const void *buf, size_t count);

• fd: the file descriptor for the file you'd like to write to
• buf: the memory location storing the bytes that should be written
• count: the number of bytes you wish to write from buf
• returns -1 on error, or otherwise the number of bytes that were written

Key idea: write may not write all the bytes you ask it to! The return value tells you
how many were actually written. E.g. if not enough space, or if interrupted)
Key idea #2: the operating system keeps track of where in a file a file descriptor is
writing to. So the next time you write, it will write to where you left off.

41

Example: Copy
Let's write an example program copy that emulates the built-in cp command. It
takes in two command line arguments (file names) and copies the contents of
the first file to the second.
E.g. ./copy source.txt dest.txt

1. Open the source file and the destination file and get file descriptors
2. Read each chunk of data from the source file and write it to the destination

file

copy-soln.c and copy-soln-full.c (with error checking)

42

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.
static const int kDefaultPermissions = 0644;

int main(int argc, char *argv[]) {
int sourceFD = open(argv[1], O_RDONLY);
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

copyContents(sourceFD, destinationFD);

close(sourceFD);
close(destinationFD);
return 0;

}

43

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.
static const int kDefaultPermissions = 0644;

int main(int argc, char *argv[]) {
int sourceFD = open(argv[1], O_RDONLY);
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

copyContents(sourceFD, destinationFD);

close(sourceFD);
close(destinationFD);
return 0;

}

”create the file to write to, and
it must not already exist”

44

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
// Goal: while there’s more data from source, read the next
// chunk and write it to the destination.

}

45

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
char buffer[kCopyIncrement];
...

}

Read in chunks of
kCopyIncrement bytes

46

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
char buffer[kCopyIncrement];
while (true) {

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;

...
}

}

Read a chunk of bytes. It may
not be kCopyIncrement bytes!
If read returns 0, there are no
more bytes to read.

47

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
char buffer[kCopyIncrement];
while (true) {

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
size_t bytesWritten = 0;
while (bytesWritten < bytesRead) {

...
}

}
}

Now we write this chunk of
bytes to the destination file.
We must loop until write
writes them all.

48

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
char buffer[kCopyIncrement];
while (true) {

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
size_t bytesWritten = 0;
while (bytesWritten < bytesRead) {

ssize_t count = write(destinationFD, buffer + bytesWritten,
bytesRead - bytesWritten);

bytesWritten += count;
}

}
}

Since write may write only
some of the bytes, we need to
just give it the rest of the bytes
that it hasn’t written yet.

49

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
char buffer[kCopyIncrement];
while (true) {

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
size_t bytesWritten = 0;
while (bytesWritten < bytesRead) {

ssize_t count = write(destinationFD, buffer + bytesWritten,
bytesRead - bytesWritten);

bytesWritten += count;
}

}
}

50

File descriptors are a powerful
abstraction for working with files

and other resources. They are
used for files, networking and user

input/output!

51

File Descriptors and I/O
There are 3 special file descriptors provided by default to each program:
• 0: standard input (user input from the terminal) - STDIN_FILENO
• 1: standard output (output to the terminal) - STDOUT_FILENO
• 2: standard error (error output to the terminal) - STDERR_FILENO

Programs always assume that 0,1,2 represent
STDIN/STDOUT/STDERR. Even if we change them! (eg. we close FD 1,
then open a new file).

52

Example: Copy
What is the smallest 1 line change/hack we could make to this code to make it
print the contents of the source file to the terminal instead of copying it to the
destination file?
static const int kDefaultPermissions = 0644;
int main(int argc, char *argv[]) {

int sourceFD = open(argv[1], O_RDONLY);
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

copyContents(sourceFD, destinationFD);

close(sourceFD);
close(destinationFD);
return 0;

}

53

Example: Copy
What is the smallest 1 line change/hack we could make to this code to make it
print the contents of the source file to the terminal instead of copying it to the
destination file?
static const int kDefaultPermissions = 0644;
int main(int argc, char *argv[]) {

int sourceFD = open(argv[1], O_RDONLY);
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

copyContents(sourceFD, STDOUT_FILENO);

close(sourceFD);
close(destinationFD);
return 0;

}

54

Example: Copy
What is the smallest 1 line change/hack we could make to this code to make it
print the contents of the source file to the terminal instead of copying it to the
destination file?
static const int kDefaultPermissions = 0644;
int main(int argc, char *argv[]) {

int sourceFD = open(argv[1], O_RDONLY);
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

copyContents(sourceFD, STDOUT_FILENO);

close(sourceFD);
close(destinationFD);
return 0;

}

55

Recap
• Recap: Crash Recovery so far
• Approach #3: Write-Ahead Logging

(“Journaling”)
• Interacting with the filesystem in user

programs
• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files

Next time: more about filesystem
system calls

Lecture 6 takeaways: There
are various ways to
implement crash recovery,
such as logging, each with
tradeoffs between durability,
consistency and performance.
System calls like open and
close are functions provided
by the operating system to do
tasks we cannot do ourselves.

