
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 7
File Descriptors and System Calls

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 13.1-13.2

2

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS198 Section Leading!

cs198@cs.stanford.edu
cs198.stanford.edu – application due 2/1

3

CS111 Topic 1: Filesystems

Filesystems
introduction and

design

Case study: Unix
V6 Filesystem Crash Recovery

Filesystem
System calls and
file descriptors

Lecture 2 Lecture 3-4 Lecture 5-6 Lecture 6/Today

Key Question: How can we design filesystems to manage files on disk, and what are
the tradeoffs inherent in designing them? How can we interact with the filesystem in
our programs?

assign2: implement a program that can repair a filesystem after a crash, and explore
some of the security and ethical implications of OSes / filesystems.

4

Learning Goals
• Learn about the open, close, read and write functions that let us interact with

files
• Get familiar writing programs that read, write and create files
• Learn what the operating system manages for us so that we can interact with

files

5

Plan For Today
• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files
• More about file descriptors

cp -r /afs/ir/class/cs111/lecture-code/lect7 .

6

Plan For Today
• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files
• More about file descriptors

cp -r /afs/ir/class/cs111/lecture-code/lect7 .

7

OS vs. User Mode
• The operating system runs code in a privileged “kernel mode” where it can do

things and access data that regular user programs cannot. E.g. only OS can call
readSector.

• System tracks whether it is in “user mode” or “kernel mode”
• The OS provides public functions that we can call in our user programs –

system calls. When these functions are called, it switches over to “kernel
mode”.

8

System Calls
Functions to interact with the operating system are part of a group of functions
called system calls.
• A system call is a public function provided by the operating system.
• The operating system handles these tasks because they require special

privileges that we do not have in our programs. When a system call runs, it
runs in kernel mode, and we switch back to user mode when it’s done.

• The operating system kernel runs the code for a system call, completely
isolating the system-level interaction from your (potentially harmful) program.

• We are going to examine the system calls for interacting with files. When
writing production code, you will often use higher-level methods that build on
these (like C++ streams or FILE *), but let's see how they work!

9

open()

Call open to open a file:

int open(const char *pathname, int flags);

• pathname: the path to the file you wish to open
• flags: a bitwise OR of options specifying the behavior for opening the file
• returns a file descriptor representing the opened file, or -1 on error

Many possible flags (see manual page for full list). You must include exactly one
of the following flags: O_RDONLY (read-only), O_WRONLY (write-only),
O_RDWR (read and write). These say how you will use the file in this program.
Another useful flag: O_TRUNC means if the file exists already, truncate (clear) it.

10

open()

Call open to open a file:

int open(const char *pathname, int flags, mode_t mode);

You can also create a new file if the specified file doesn’t exist, by including
O_CREAT as one of the flags. You must also specify a third mode parameter.
• mode: the permissions to attempt to set for a created file

11

open()

Call open to open a file:

int open(const char *pathname, int flags, mode_t mode);

You can also create a new file if the specified file doesn’t exist, by including
O_CREAT as one of the flags. You must also specify a third mode parameter.
• mode: the permissions to attempt to set for a created file

Another useful flag: O_EXCL, which says the file must be created from scratch,
and to fail if the file already exists.

Aside: how are there multiple signatures for open in C? See here.

https://stackoverflow.com/questions/15151396/open-system-call-polymorphism

12

File Descriptors
A file descriptor is like a "ticket number" representing your currently-open file.
• It is a unique number assigned by the operating system to refer to that

instance of that file in this program.
• Each program has its own file descriptors
• You can have multiple file descriptors for the same file - every time you call

open, you get a new file descriptor.
• When you wish to refer to the file (e.g. read from it, write to it) you must

provide the file descriptor.
• file descriptors are assigned in ascending order (next FD is lowest unused)
• The OS remembers information associated with each of your file descriptors,

like where in the file you currently are (if reading/writing)

13

close()

Call close to close a file when you’re done with it:

int close(int fd);

• fd: the file descriptor you'd like to close.

It's important to close files when you are done with them to preserve system
resources.
• You can use valgrind to check if you forgot to close any files. (--track-fds=yes)

14

Plan For Today
• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files
• More about file descriptors

cp -r /afs/ir/class/cs111/lecture-code/lect7 .

15

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

touch.c

16

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

Open the
f ile to be

writ ten to

touch.c

17

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

If the f ile
doesn’t exist,

create it

touch.c

18

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

If it does
exist, throw

an error

touch.c

19

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

If we create a new f ile, it should
have these permissions (don’t

worry about specif ics for now)

touch.c

20

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

touch.c

21

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

touch.c

Specify how
we are going
to use this
f ile in this
program

22

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

touch.c

Specify
permissions

for
everyone on
disk if this
call creates
a new f ile

23

Plan For Today
• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files
• More about file descriptors

cp -r /afs/ir/class/cs111/lecture-code/lect7 .

24

read()
Call read to read bytes from an open file:

ssize_t read(int fd, void *buf, size_t count);

• fd: the file descriptor for the file you'd like to read from
• buf: the memory location where the read-in bytes should be put
• count: the number of bytes you wish to read
• returns -1 on error, 0 if at end of file, or nonzero if bytes were read (will never return

0 but not be at end of file)

Key idea: read may not read all the bytes you ask it to! The return value tells you how
many were actually read. (E.g. if there aren’t that many bytes, or if interrupted)
Key idea #2: the operating system keeps track of where in a file a file descriptor is
reading from. So the next time you read, it will resume where you left off.

25

write()
Call write to write bytes to an open file:

ssize_t write(int fd, const void *buf, size_t count);

• fd: the file descriptor for the file you'd like to write to
• buf: the memory location storing the bytes that should be written
• count: the number of bytes you wish to write from buf
• returns -1 on error, or otherwise the number of bytes that were written

Key idea: write may not write all the bytes you ask it to! The return value tells you
how many were actually written. E.g. if not enough space, or if interrupted)
Key idea #2: the operating system keeps track of where in a file a file descriptor is
writing to. So the next time you write, it will write to where you left off.

26

Example: Copy
Let's write an example program copy that emulates the built-in cp command. It
takes in two command line arguments (file names) and copies the contents of
the first file to the second.
E.g. ./copy source.txt dest.txt

1. Open the source file and the destination file and get file descriptors
2. Read each chunk of data from the source file and write it to the destination

file

copy-soln.c and copy-soln-full.c (with error checking)

27

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.
static const int kDefaultPermissions = 0644;

int main(int argc, char *argv[]) {
int sourceFD = open(argv[1], O_RDONLY);
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

copyContents(sourceFD, destinationFD);

close(sourceFD);
close(destinationFD);
return 0;

}

28

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.
static const int kDefaultPermissions = 0644;

int main(int argc, char *argv[]) {
int sourceFD = open(argv[1], O_RDONLY);
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

copyContents(sourceFD, destinationFD);

close(sourceFD);
close(destinationFD);
return 0;

}

“create the file to write to, and
it must not already exist”

29

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
// Goal: while there’s more data from source, read the next
// chunk and write it to the destination.

}

30

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
char buffer[kCopyIncrement];
...

}

Read in chunks of
kCopyIncrement bytes
(arbitrary amount)

31

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
char buffer[kCopyIncrement];
while (true) {

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;

...
}

}

Read a chunk of bytes. It may
not be kCopyIncrement bytes!
If read returns 0, there are no
more bytes to read.

32

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
char buffer[kCopyIncrement];
while (true) {

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;

...
}

}

Cool behavior: the next time
through the loop when we call
read, it will automatically read the
next chunk of bytes from the file!

33

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
char buffer[kCopyIncrement];
while (true) {

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
size_t bytesWritten = 0;
while (bytesWritten < bytesRead) {

...
}

}
}

Now we write this chunk of
bytes to the destination file.
We must loop until write
writes them all.

34

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
char buffer[kCopyIncrement];
while (true) {

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
size_t bytesWritten = 0;
while (bytesWritten < bytesRead) {

ssize_t count = write(destinationFD, buffer + bytesWritten,
bytesRead - bytesWritten);

bytesWritten += count;
}

}
}

Since write may write only
some of the bytes, we need to
just give it the rest of the bytes
that it hasn’t written yet.

35

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
char buffer[kCopyIncrement];
while (true) {

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
size_t bytesWritten = 0;
while (bytesWritten < bytesRead) {

ssize_t count = write(destinationFD, buffer + bytesWritten,
bytesRead - bytesWritten);

bytesWritten += count;
}

}
}

Cool behavior: each time through the
loop, write knows where we left off
writing in the file from before. However,
it doesn’t know what to write – we must
do pointer arithmetic to specify that.

36

Example: Copy
The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
char buffer[kCopyIncrement];
while (true) {

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
size_t bytesWritten = 0;
while (bytesWritten < bytesRead) {

ssize_t count = write(destinationFD, buffer + bytesWritten,
bytesRead - bytesWritten);

bytesWritten += count;
}

}
}

37

Plan For Today
• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files
• More about file descriptors

cp -r /afs/ir/class/cs111/lecture-code/lect7 .

38

File descriptors are a powerful
abstraction for working with files

and other resources. They are
used for files, networking and user

input/output!

39

File Descriptors and I/O
There are 3 special file descriptors provided by default to each program:
• 0: standard input (user input from the terminal) - STDIN_FILENO
• 1: standard output (output to the terminal) - STDOUT_FILENO
• 2: standard error (error output to the terminal) - STDERR_FILENO

Programs always assume that 0,1,2 represent
STDIN/STDOUT/STDERR. Even if we change them! (eg. we close FD 1,
then open a new file).

40

Example: Copy
What is the smallest 1 line change/hack we could make to this code to make it
print the contents of the source file to the terminal instead of copying it to the
destination file?
static const int kDefaultPermissions = 0644;
int main(int argc, char *argv[]) {

int sourceFD = open(argv[1], O_RDONLY);
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

copyContents(sourceFD, destinationFD);

close(sourceFD);
close(destinationFD);
return 0;

}

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

41

42

Example: Copy
What is the smallest 1 line change/hack we could make to this code to make it
print the contents of the source file to the terminal instead of copying it to the
destination file?
static const int kDefaultPermissions = 0644;
int main(int argc, char *argv[]) {

int sourceFD = open(argv[1], O_RDONLY);
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

copyContents(sourceFD, STDOUT_FILENO);

close(sourceFD);
close(destinationFD);
return 0;

}

43

Example: Copy
What is the smallest 1 line change/hack we could make to this code to make it
print the contents of the source file to the terminal instead of copying it to the
destination file?
static const int kDefaultPermissions = 0644;
int main(int argc, char *argv[]) {

int sourceFD = open(argv[1], O_RDONLY);
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

copyContents(sourceFD, STDOUT_FILENO);

close(sourceFD);
close(destinationFD);
return 0;

}

44

Recap
• System calls
• open() and close()
• Practice: creating files
• read() and write()
• Practice: copying files
• More about file descriptors

Next time: introduction to
multiprocessing

Lecture 7 takeaway: System
calls are functions provided
by the operating system to do
tasks we cannot do ourselves.
open, close, read and write
are 4 system calls that work
via file descriptors to work
with files.

cp -r /afs/ir/class/cs111/lecture-code/lect7 .

