CS 111 Final Review Session

Winter 2025
Poojan Pandya and Shruti Verma

Adapted from Briana Berger, Yashodhar Govil, Parthiv Krishna



Key Topics

o Filesystems and Crash Recovery

o Multiprocessing and Pipes

o Multithreading and Synchronization
o Dispatching and Scheduling

o Virtual Memory and Paging

o Ethics



Lightning Recap
Filesystems n Multiprocessing

*Exam emphasizes knowledge from the later half of the class though; thus this
isn’t comprehensive


https://emojipedia.org/high-voltage/#:~:text=Depicted%20as%20a%20jagged%20yellow,energy%20and%20signal%20attention%20online.
https://emojipedia.org/high-voltage/#:~:text=Depicted%20as%20a%20jagged%20yellow,energy%20and%20signal%20attention%20online.

Unix vo Filesystem

e Stores inodes on disk together in the inode table for quick access.

® An inode ("index node") is a grouping of data about a single file. It’s
stored on disk, but we can read it into memory when the file is open
o Each Unix v6 inode has space for 8 block numbers

e For "small" files/directories, i_addr stores up to 8 direct block
numbers.

e For "large" files/directories, i _addr's up to first seven entries store
singly-indirect block numbers, and the eighth entry (if needed)
stores a doubly-indirect block number.



3 Approaches to Crash Recovery

1. Consistency check on reboot (fsck)
2. Ordered Writes

3. Write-Ahead Logging (“Journaling”)



3 Approaches to Crash Recovery

1. Consistency check on reboot (fsck)

a. No filesystem changes, run program on boot to repair whatever we can.

b. Downsides: Doesn’t prevent information loss & filesystem may still be unusable
2. Ordered Writes

3. Write-Ahead Logging (“Journaling”)



3 Approaches to Crash Recovery

1. Consistency check on reboot (fsck)

a. No filesystem changes, run program on boot to repair whatever we can.
b. Downsides: Doesn’t prevent information loss & filesystem may still be unusable
2. Ordered Writes
a. We could prevent certain inconsistencies by making writes in a particular order.
b. Downsides: dependency management, leaks data
3. Write-Ahead Logging (“Journaling”)



3 Approaches to Crash Recovery

1. Consistency check on reboot (fsck)
a. No filesystem changes, run program on boot to repair whatever we can.
b. Downsides: Doesn’t prevent information loss & filesystem may still be unusable
2. Ordered Writes
a. We could prevent certain inconsistencies by making writes in a particular order.
b. Downsides: dependency management, leaks data
3. Write-Ahead Logging (“Journaling”)
a. log metadata (and optionally file data) operations before doing the operations to
create a paper trail we can redo in case of a crash.
b. must be done synchronously (soln: delay writes), log gets long (soln: checkpoints),
multiple logs might need some operations to be atomic (soln: transactions), logs
must be idempotent (doing multiple times has same effect as doing once)



Multiprocessing (fork) vs. Multithreading (std::ithread)

Multiprocessing

Main Process

A

4

A

Multithreading

A

4

Process 1

CPU+Memory

Process 2

CPU+Memory

Process 3

CPU+Memory

Concurrency within a single process using threads!

Main Process

CPU
Memory
A4 AV N
A4 A4 A4
Thread1 Thread2 Thread3
v AV AV
A4 AV A4
A4 A4 N




Multiprocessing (fork) vs. Multithreading (std::ithread)

e Concurrency within a single process using threads.
® Processes:
o isolated virtual address spaces (['4: security, ® : harder to share)
o run external programs easily (fork-exec) (['4)
o harder to coordinate tasks in the same program (#)
® Threads:
o share virtual address space (™ : security, _]: easier to share)
o can't run external programs easily (#)

O easier to coordinate tasks within the same program (_])



What questions do you have?



Multithreading and
Synchronization

The Monitor Pattern: ThreadPipe



ThreadPipe

o Let’simplement a class called ThreadPipe
o Like a pipe, but between threads instead of processes

e vOld put (char c);

o Puts a character in the pipe (or blocks if it’s full, just like write to a
pipe)

e Char get();

o Gets a character from the pipe (or blocks if it’s empty, just like read
from a pipe)



ThreadPipe: Baseline Implementation

ClaSS ThreadPipe { void ThreadPipe: :put (char c) {

. count++;

ThreadPlpe () { } buffer [nextPut] = c;
! N nextPut++;
void put (char c); if (nextPut == SIZE) {
char get () ’ nextPut = 0;
}
}

char buffer [SIZE] M char ThreadPipe::get () {
int count = 0; countm=/

char ¢ = buffer[nextGet];

int nextPut = 0; nextGet++;

: 1E tGet == SIZE) {
int nextGet = 0; e _ o,
b i }
4

return c;



ThreadPipe: Baseline Implementation

class ThreadPipe {
ThreadPipe () {}

vold put (char c);

char get();

char buffer[SIZE];

int count = 0;

int nextPut = 0;
int nextGet = 0;

b

void ThreadPipe: :put (char c) {

count++;

buffer[nextPut] = c;

nextPut++;

if (nextPut == SIZE) {
nextPut = 0;

}

ThreadPipe::get () {

count--;

char ¢ = buffer[nextGet];
nextGet++;

if (nextGet == SIZE) {

nextGet = 0;
}

return c;

Are there any race conditions possible? If so, how can we fix it?



ThreadPipe: Locked Implementation

: void ThreadPipe: :put (char c) {
class ThregdPlpe { Lock . Lock () ;
ThreadPipe () {} count++;
: . buffer[nextPut] = c;
volid put (char c); et UL
char get () if (nextPut == SIZE) ({

nextPut = 0;
}

lock.unlock () ;

std: :mutex lock; )

char buffer[SIZE]; char Pipe::get () {

int count = 0; lock.lock () ;

) count—--;

int nextPut = O; char ¢ = buffer[nextGet];
int nextGet = 0; pextoerty

if (nextGet == SIZE) {
}s nextGet = 0;

}

lock.unlock () ;

return c;



ThreadPipe: Locked Implementation

class ThreadPipe {

Y}

ThreadPipe () {}
volid put (char c);
char get ()

std: :mutex lock;

char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0

.
14

What if the ThreadPipe is full/empty?

void ThreadPipe: :put (char c) {

char

lock.lock() ;

count++;
buffer[nextPut] = c;
nextbPut++;

if (nextPut == SIZE) {

nextPut = 0;
}

lock.unlock () ;

Pipe::get () {

lock.lock() ;

count--;

char ¢ = buffer[nextGet];

nextGet++;

i1f (nextGet == SIZE) {
nextGet = 0;

}

lock.unlock () ;

return c;



ThreadPipe: Busywaiting

void ThreadPipe::put (char c) {
lock.lock () ;
while (count == SIZE) {
lock.unlock() ;
lock.lock() ;

class ThreadPipe { }
ThreadPipe () {} count++;
, buffer[nextPut] = c;
volid put (char c); nextPut++;
. if (nextPut == SIZE) {
char get () ’ nextPut = 0;

}

lock.unlock () ;

}

std: :mutex lock; ,
char Pipe::get () {

char buffer[SIZE]; lock.lock () ;
. . . while (count == 0) {
int count = O, lock.unlock () ;

int nextPut = 0 } lock.lock () ;
int nextGet = 0 count--;
char ¢ = buffer[nextGet];

}; nextGet++;
if (nextGet == SIZE) {
nextGet = 0;
}

lock.unlock () ;
return c;

e e



ThreadPipe: Busywaiting

class ThreadPipe {
ThreadPipe () {}

volid put (char c);

char get ()

std: :mutex lock;
char buffer[SIZE];

int count = 0;
int nextPut = 0
int nextGet = 0

e e

How can we avoid busywaiting?

void ThreadPipe: :put (char c)

lock.lock () ;

while (count == SIZE)
lock.unlock() ;
lock.lock() ;

}

count++;

buffer[nextPut] = c;

nextPut++;

if (nextPut ==
nextPut =

}

lock.unlock () ;

}

char Pipe::get () {
lock.lock () ;

SIZE)
0;

while (count == 0) {
lock.unlock () ;
lock.lock () ;

}

count—--;

char ¢ = buffer[nextGet];

nextGet++;

if (nextGet ==
nextGet =

}

lock.unlock () ;
return c;

SIZE)
0;

{

{

{



Condition Variables

|dentify a single kind of event that we need to wait / notify for
Ensure there is proper state to check if the event has happened

Create a condition variable and share it among all threads either waiting
for that event to happen or triggering that event

ldentify who will notify that this happens, and have them notify via the
condition variable

ldentify who will wait for this to happen, and have them wait via the
condition variable



ThreadPipe: Condition Variables

void ThreadPipe: :put (char c) {
lock.lock () ;
while (count == SIZE) {
removed.wait (lock) ;
}

class ThreadPipe { count++;
- buffer[nextPut] = c;
ThFeadPlpe() H nextPut++;
void put (char c); if (nextPut == SIZE)

nextPut = 0;
if (count == 1) added.notify all();
lock.unlock () ;

char get();

}

std: :mutex lock; char Pipe::get () {
std: :condition variable any added; Lock.lock();
= ] - while (count == 0) {
std: :condition_variable any removed; added.wait (lock) ;
}
count—--;
char buffer[SIZE]; char ¢ = buffer[nextGet];
int count = O; DeXtGet++;
. oAl if (nextGet == SIZE)
int nextPut = 0; nextGet = 0;
int nextGet = 0; ) .
if (count == SIZE-1) removed.notify all();
b lock.unlock () ;

return c;



What questions do you have about
ThreadPipe?



Dispatching and Scheduling



110 Practice Final 3: Question 4e

e. [2 points] The process scheduler relies on runnable and blocked queues to categorize
processes. How exactly does this categorization lead to better CPU utilization?


https://web.stanford.edu/class/cs110/assessments/practice/cs110-practice-final-3.pdf

110 Practice Final 3: Question 4e

e. [2 points] The process scheduler relies on runnable and blocked queues to categorize
processes. How exactly does this categorization lead to better CPU utilization?

o Don’t want to run threads that can’t do any useful work right
now (blocked).

o Ensures that we only run threads that can do something.


https://web.stanford.edu/class/cs110/assessments/practice/cs110-practice-final-3.pdf

Blocked Running




Blocked Running




e.g. lock
unlocked, disk
i/o completed

Blocked Running



Blocked Running




popped from
ready queue

Blocked Running



Blocked Running




e.g. timeslice
ran out

Blocked Running




Blocked Running




e.g. lock already locked, disk read

Blocked Running



Blocked Running




Blocked Running

e.g. lock unlocked, disk i/o completed,
AND core is available (skip ready
queue)



e.g. lock
unlocked, disk
i/o completed

e.g. timeslice
popped from ran out

ready queue

e.g. lock already locked, disk read

Blocked Running

e.g. lock unlocked, disk i/o completed,
AND core is available (skip ready
queue)



What questions do you have about
Dispatching and Scheduling?



Virtual Memory

Different Approaches: Pros and Cons



Load Time Relocation (pre-virtual
memory)

® Pros

® Cons




Operating
System

Load Time Relocation (pre-virtual
memory)

Process 1

® Pros ® Cons

o Must decide process memory space ahead of

o Fast once loading is done .
time

(no address translation

needed) o Cannot grow when adjacent regions are used

o External fragmentation

o Programs are compiled assuming their memory
space starts at 0, so we would need to rewrite
the program’s pointers when we load

m Can’t move the program in memory after
loading unless we somehow intercept and
update all pointers



Base and Bound

® Pros ® Cons



Base and Bound

® Pros ® Cons
© Quick address translation o All memory allocated to a process has to be
o Very little space needed to contiguous virtual addresses

track info about each

) m Stack is often far from heap in virtual address
process’s memory

. . space
o Separate virtual and physical

address - can move physical o Can only grow upwards
memory, update base, etc.

(pro for all virtual memory

implementations)



Multiple Segments

® Pros e Cons



Multiple Segments

® Pros

O

O

Still pretty quick address translation

Still relatively little space needed
per-process for VM info

Can allocate different discontinuous
areas of VM with different protections

m Code, Data, Stack

® Cons

o Segments are of different
sizes, so we will tend
towards external
fragmentation

o Segment encoding is
limited (have to decide
how many bits to store
segment number vs offset)



Paging

® Pros ® Cons



Paging

® Pros

O

Fixed size pages: no external
fragmentation

Can dynamically resize memory
allocated to a process

Can grow in either direction

Can assign different permissions
to different pages

m Code, Data, Stack

® Cons

o Internal fragmentation within pages. You
can only get memory in 4KB chunks.

o Relatively slower/more complicated
address translation, especially with
multi-level page tables

m Can be accelerated with dedicated
hardware like memory management
unit (MMU)



What questions do you have about
Virtual Memory?



Demand Paging

e We should be able to make memory look bigger than it is by using other
resources (like our hard drive).

® This allows us to prioritize memory in use and move currently-not-in-use pages

to the hard drive temporarily.
o This is called “swapping”
o (1) Pick a page to kick (e.g. random, Clock Algorithm)
o (2) Write to disk
o (3) Mark old page map entry as not present
o (4) Update page map at new virtual page to be present and map to physical page
e |f a program asks for a page that’s currently on disk, it triggers a page fault,

which restores the information back into memory.



Clock Algorithm

e The Clock Algorithm is a way to find the Was this page accessed
least recently used item in a collection of A 4==m recently (reference = 1)?
items (usually in our case the global page If so, set reference =0 and
table). B continue.

e Simpler than it sounds:

o (1) When items are used, they’re marked as
Recently used (1)

o (2) When items need to be evicted/kicked
out, it goes around the list in a cycle. D
Marked-Recent items are skipped and
unmarked (set to 0); the first unmarked
item(s) are evicted to make room for new
pages.




Thrashing

o One potential drawback of demand paging

o Occurs when pages being actively used don’t all fit in memory

o Program spends most of time reading / writing to and from disk

o Access time of memory will be as slow as disk rather than disk’s being as
fast as memory



Ethics



Three Paths to Trust: Trust by —

1. Assumption:

1. Inference:

1. Substitution:



Three Paths to Trust: Trust by —

1. Assumption: trust absent any clues to warrant it.
a. E.g.using unknown 3rd party library because deadline is approaching
b. E.g. warnings from others about imminent danger (e.g. “look out for the car!”)

2. Inference:

3. Substitution:



Three Paths to Trust: Trust by —

1. Assumption: trust absent any cluses to warrant it.
a. E.g.using unknown 3rd party library because deadline is approaching
b. E.g. warnings from others about imminent danger (e.g. “look out for the car!”)

2. Inference: trust based on information, e.g. past performance, characteristics,

institutions

a. E.g.trustin brands or affiliation (weaker)
b. E.g. past performance (stronger)

c. E.g.trustin prior versions of software

3. Substitution:



Three Paths to Trust: Trust by —

1. Assumption: trust absent any cluses to warrant it.

a. E.g.using unknown 3rd party library because deadline is approaching
b. E.g. warnings from others about imminent danger (e.g. “look out for the car!”)
2. Inference: trust based on information, e.g. past performance, characteristics,
institutions
a. E.g.trustin brands or affiliation (weaker)
b. E.g. past performance (stronger)
c. E.g.trustin prior versions of software

3. Substitution: trust by implementing system to partly replace the need to trust
something (“Plan B”)

a. E.g.setan alarm on a second device in case the alarm on your phone doesn’t work
b. E.g.using unique, fake per-app emails for login, in case your personal info is leaked



Building Trust Into Software

o Stakeholders (Direct/Indirect)

e« Pervasiveness

e lime



Building Trust Into Software

o Stakeholders (Direct/Indirect)

o ldentifying stakeholders allows us to focus our trust efforts.
o E.g Patients are an indirect stakeholder for medical office use device

e« Pervasiveness

e lime



Building Trust Into Software

o Stakeholders (Direct/Indirect)

o ldentifying stakeholders allows us to focus our trust efforts.
o E.g Patients are an indirect stakeholder for medical office use device

e« Pervasiveness

o Pervasiveness may influence how we approach building in trust
o E.g.ls it acritical infrastructure software or a just for personal use?

e lime



Building Trust Into Software

o Stakeholders (Direct/Indirect)

o ldentifying stakeholders allows us to focus our trust efforts.

o E.g Patients are an indirect stakeholder for medical office use device
« Pervasiveness

o Pervasiveness may influence how we approach building in trust
o E.g.ls it acritical infrastructure software or a just for personal use?

e Time
o Software timescale changes how we consider building in trust
o E.g. will users be relying on it for a long time?



Impact of Technology on Trust

o Technology can lead to agential gullibility.
o E.g. ChatGPT can hallucinate



Impact of Technology on Trust

o Technology can lead to agential gullibility.
o E.g. ChatGPT can hallucinate

o Technology can require us to re-evaluate what we trust.
o E.g. Al-generated/edited imagery



Thank you for all your hard work.
Best of luck on the finallll

What questions do you have?



