
CS 111 Final Review Session
Winter 2025

Poojan Pandya and Shruti Verma

Adapted from Briana Berger, Yashodhar Govil, Parthiv Krishna

Key Topics

● Filesystems and Crash Recovery

● Multiprocessing and Pipes

● Multithreading and Synchronization

● Dispatching and Scheduling

● Virtual Memory and Paging

● Ethics

⚡ Lightning Recap ⚡
Filesystems n Multiprocessing
*Exam emphasizes knowledge from the later half of the class though; thus this

isn’t comprehensive

https://emojipedia.org/high-voltage/#:~:text=Depicted%20as%20a%20jagged%20yellow,energy%20and%20signal%20attention%20online.
https://emojipedia.org/high-voltage/#:~:text=Depicted%20as%20a%20jagged%20yellow,energy%20and%20signal%20attention%20online.

Unix v6 Filesystem
● Stores inodes on disk together in the inode table for quick access.

● An inode ("index node") is a grouping of data about a single file. It’s

stored on disk, but we can read it into memory when the file is open

○ Each Unix v6 inode has space for 8 block numbers

● For "small" files/directories, i_addr stores up to 8 direct block

numbers.

● For "large" files/directories, i_addr's up to first seven entries store

singly-indirect block numbers, and the eighth entry (if needed)

stores a doubly-indirect block number.

3 Approaches to Crash Recovery

1. Consistency check on reboot (fsck)

a. No filesystem changes, run program on boot to repair whatever we can.

b. Downsides: Doesn’t prevent information loss & filesystem may still be unusable

2. Ordered Writes

a. We could prevent certain inconsistencies by making writes in a particular order.

b. Downsides: performance, leaks data

3. Write-Ahead Logging (“Journaling”)

a. log metadata (and optionally file data) operations before doing the operations to

create a paper trail we can redo in case of a crash.

b. must be done synchronously (soln: delay writes), log gets long (soln: checkpoints),

multiple logs must be done asynchronously (soln: transactions), logs must be

idempotent (doing multiple times has same effect as doing once)

3 Approaches to Crash Recovery

1. Consistency check on reboot (fsck)

a. No filesystem changes, run program on boot to repair whatever we can.

b. Downsides: Doesn’t prevent information loss & filesystem may still be unusable

2. Ordered Writes

a. We could prevent certain inconsistencies by making writes in a particular order.

b. Downsides: performance, leaks data

3. Write-Ahead Logging (“Journaling”)

a. log metadata (and optionally file data) operations before doing the operations to

create a paper trail we can redo in case of a crash.

b. must be done synchronously (soln: delay writes), log gets long (soln: checkpoints),

multiple logs must be done asynchronously (soln: transactions), logs must be

idempotent (doing multiple times has same effect as doing once)

3 Approaches to Crash Recovery

1. Consistency check on reboot (fsck)

a. No filesystem changes, run program on boot to repair whatever we can.

b. Downsides: Doesn’t prevent information loss & filesystem may still be unusable

2. Ordered Writes

a. We could prevent certain inconsistencies by making writes in a particular order.

b. Downsides: dependency management, leaks data

3. Write-Ahead Logging (“Journaling”)

a. log metadata (and optionally file data) operations before doing the operations to

create a paper trail we can redo in case of a crash.

b. must be done synchronously (soln: delay writes), log gets long (soln: checkpoints),

multiple logs must be done asynchronously (soln: transactions), logs must be

idempotent (doing multiple times has same effect as doing once)

3 Approaches to Crash Recovery

1. Consistency check on reboot (fsck)

a. No filesystem changes, run program on boot to repair whatever we can.

b. Downsides: Doesn’t prevent information loss & filesystem may still be unusable

2. Ordered Writes

a. We could prevent certain inconsistencies by making writes in a particular order.

b. Downsides: dependency management, leaks data

3. Write-Ahead Logging (“Journaling”)

a. log metadata (and optionally file data) operations before doing the operations to

create a paper trail we can redo in case of a crash.

b. must be done synchronously (soln: delay writes), log gets long (soln: checkpoints),

multiple logs might need some operations to be atomic (soln: transactions), logs

must be idempotent (doing multiple times has same effect as doing once)

Multiprocessing (fork) vs. Multithreading (std::thread)

Concurrency within a single process using threads!

Multiprocessing (fork) vs. Multithreading (std::thread)

● Concurrency within a single process using threads.

● Processes:

○ isolated virtual address spaces (✅: security, 🚩: harder to share)

○ run external programs easily (fork-exec) (✅)

○ harder to coordinate tasks in the same program (🚩)

● Threads:

○ share virtual address space (🚩: security, ✅: easier to share)

○ can't run external programs easily (🚩)

○ easier to coordinate tasks within the same program (✅)

What questions do you have?

Multithreading and
Synchronization
The Monitor Pattern: ThreadPipe

ThreadPipe

● Let’s implement a class called ThreadPipe

● Like a pipe, but between threads instead of processes

● void put(char c);

○ Puts a character in the pipe (or blocks if it’s full, just like write to a

pipe)

● char get();

○ Gets a character from the pipe (or blocks if it’s empty, just like read

from a pipe)

ThreadPipe: Baseline Implementation

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

}

char ThreadPipe::get() {
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
return c;

}

ThreadPipe: Baseline Implementation

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

}

char ThreadPipe::get() {
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
return c;

}

Are there any race conditions possible? If so, how can we fix it?

ThreadPipe: Locked Implementation

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock;
char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
lock.lock();
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

lock.unlock();
}

char Pipe::get() {
lock.lock();
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
lock.unlock();
return c;

}

ThreadPipe: Locked Implementation

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock;
char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
lock.lock();
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

lock.unlock();
}

char Pipe::get() {
lock.lock();
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
lock.unlock();
return c;

}What if the ThreadPipe is full/empty?

ThreadPipe: Busywaiting

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock;
char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
lock.lock();
while (count == SIZE) {

lock.unlock();
lock.lock();

}
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

lock.unlock();
}

char Pipe::get() {
lock.lock();
while (count == 0) {

lock.unlock();
lock.lock();

}
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
lock.unlock();
return c;

}

ThreadPipe: Busywaiting

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock;
char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
lock.lock();
while (count == SIZE) {

lock.unlock();
lock.lock();

}
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

lock.unlock();
}

char Pipe::get() {
lock.lock();
while (count == 0) {

lock.unlock();
lock.lock();

}
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
lock.unlock();
return c;

}
How can we avoid busywaiting?

Condition Variables

1. Identify a single kind of event that we need to wait / notify for

2. Ensure there is proper state to check if the event has happened

3. Create a condition variable and share it among all threads either waiting
for that event to happen or triggering that event

4. Identify who will notify that this happens, and have them notify via the
condition variable

5. Identify who will wait for this to happen, and have them wait via the
condition variable

ThreadPipe: Condition Variables

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock;
std::condition_variable_any added;
std::condition_variable_any removed;

char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
lock.lock();
while (count == SIZE) {

removed.wait(lock);
}
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE)

nextPut = 0;
if (count == 1) added.notify_all();
lock.unlock();

}

char Pipe::get() {
lock.lock();
while (count == 0) {

added.wait(lock);
}
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE)

nextGet = 0;

if (count == SIZE-1) removed.notify_all();
lock.unlock();
return c;

}

What questions do you have about
ThreadPipe?

Dispatching and Scheduling

110 Practice Final 3: Question 4e

https://web.stanford.edu/class/cs110/assessments/practice/cs110-practice-final-3.pdf

110 Practice Final 3: Question 4e

● Don’t want to run threads that can’t do any useful work right

now (blocked).

● Ensures that we only run threads that can do something.

https://web.stanford.edu/class/cs110/assessments/practice/cs110-practice-final-3.pdf

Blocked Running

Ready

Blocked Running

Ready

e.g. lock
unlocked, disk
i/o completed

Blocked Running

Ready

Blocked Running

Ready

popped from
ready queue

Blocked Running

Ready

Blocked Running

Ready

Blocked Running

Ready

e.g. timeslice
ran out

Blocked Running

Ready

e.g. lock already locked, disk read

Blocked Running

Ready

Blocked Running

Ready

e.g. lock unlocked, disk i/o completed,
AND core is available (skip ready
queue)

Blocked Running

Ready

popped from
ready queue

e.g. lock
unlocked, disk
i/o completed

e.g. lock already locked, disk read

e.g. lock unlocked, disk i/o completed,
AND core is available (skip ready
queue)

Blocked Running

Ready

e.g. timeslice
ran out

What questions do you have about
Dispatching and Scheduling?

Virtual Memory
Different Approaches: Pros and Cons

Load Time Relocation (pre-virtual
memory)

● Pros

○ Fast once loading is done

(no address translation

needed)

● Cons

○ Must decide process memory space ahead of
time

○ Cannot grow when adjacent regions are used

○ External fragmentation

○ Programs are compiled assuming their memory
space starts at 0, so we would need to rewrite
the program’s pointers when we load

■ Can’t move the program in memory after
loading unless we somehow intercept and
update all pointers

Load Time Relocation (pre-virtual
memory)

● Pros

○ Fast once loading is done

(no address translation

needed)

● Cons

○ Must decide process memory space ahead of
time

○ Cannot grow when adjacent regions are used

○ External fragmentation

○ Programs are compiled assuming their memory
space starts at 0, so we would need to rewrite
the program’s pointers when we load

■ Can’t move the program in memory after
loading unless we somehow intercept and
update all pointers

Base and Bound

● Pros

○ Simple

○ Quick address translation

○ Very little space needed to

track info about each

process’s memory

● Cons

○ All memory allocated to a process has to be

contiguous virtual addresses

■ Stack is often far from heap in virtual address

space

○ Can only grow upwards

Base and Bound

● Pros

○ Quick address translation

○ Very little space needed to
track info about each
process’s memory

○ Separate virtual and physical
address - can move physical
memory, update base, etc.
(pro for all virtual memory
implementations)

● Cons

○ All memory allocated to a process has to be

contiguous virtual addresses

■ Stack is often far from heap in virtual address

space

○ Can only grow upwards

Multiple Segments

● Pros

○ Not as simple as Base + Bound, but still
very simple

○ Still pretty quick address translation

○ Still relatively little space needed
per-process for VM info

○ Can allocate different discontinuous
areas of VM with different protections

■ Code, Heap, Stack

● Cons

○ Segments are of different
sizes, so we will tend
towards external
fragmentation

○ Generally, not many
segments

Multiple Segments

● Pros

○ Still pretty quick address translation

○ Still relatively little space needed

per-process for VM info

○ Can allocate different discontinuous

areas of VM with different protections

■ Code, Data, Stack

● Cons

○ Segments are of different
sizes, so we will tend
towards external
fragmentation

○ Segment encoding is
limited (have to decide
how many bits to store
segment number vs offset)

Paging

● Pros

○ Fixed size pages: no external

fragmentation

○ Can dynamically resize memory

allocated to a process

○ Can grow in either direction

○ Can assign different permissions

to different pages

■ Code, Heap, Stack

● Cons

○ Internal fragmentation within pages. You
can only get memory in 4KB chunks.

○ Relatively slower/more complicated
address translation, especially with
multi-level page tables

■ Can be accelerated with dedicated
hardware: memory management
unit (MMU)

Paging

● Pros

○ Fixed size pages: no external

fragmentation

○ Can dynamically resize memory

allocated to a process

○ Can grow in either direction

○ Can assign different permissions

to different pages

■ Code, Data, Stack

● Cons

○ Internal fragmentation within pages. You
can only get memory in 4KB chunks.

○ Relatively slower/more complicated
address translation, especially with
multi-level page tables

■ Can be accelerated with dedicated
hardware like memory management
unit (MMU)

What questions do you have about
Virtual Memory?

Demand Paging
● We should be able to make memory look bigger than it is by using other

resources (like our hard drive).

● This allows us to prioritize memory in use and move currently-not-in-use pages

to the hard drive temporarily.
○ This is called “swapping”

○ (1) Pick a page to kick (e.g. random, Clock Algorithm)

○ (2) Write to disk

○ (3) Mark old page map entry as not present

○ (4) Update page map at new virtual page to be present and map to physical page

● If a program asks for a page that’s currently on disk, it triggers a page fault,

which restores the information back into memory.

Clock Algorithm
● The Clock Algorithm is a way to find the

least recently used item in a collection of

items (usually in our case the global page

table).

● Simpler than it sounds:
○ (1) When items are used, they’re marked as

Recently used (1)

○ (2) When items need to be evicted/kicked

out, it goes around the list in a cycle.

Marked-Recent items are skipped and

unmarked (set to 0); the first unmarked

item(s) are evicted to make room for new

pages.

Thrashing
● One potential drawback of demand paging

● Occurs when pages being actively used don’t all fit in memory

● Program spends most of time reading / writing to and from disk

● Access time of memory will be as slow as disk rather than disk’s being as

fast as memory

Ethics

Three Paths to Trust: Trust by —

1. Assumption:

1. Inference:

1. Substitution:

Three Paths to Trust: Trust by —

1. Assumption: trust absent any clues to warrant it.
a. E.g. using unknown 3rd party library because deadline is approaching

b. E.g. warnings from others about imminent danger (e.g. “look out for the car!”)

2. Inference:

3. Substitution:

Three Paths to Trust: Trust by —

1. Assumption: trust absent any cluses to warrant it.
a. E.g. using unknown 3rd party library because deadline is approaching

b. E.g. warnings from others about imminent danger (e.g. “look out for the car!”)

2. Inference: trust based on information, e.g. past performance, characteristics,

institutions
a. E.g. trust in brands or affiliation (weaker)

b. E.g. past performance (stronger)

c. E.g. trust in prior versions of software

3. Substitution:

Three Paths to Trust: Trust by —

1. Assumption: trust absent any cluses to warrant it.
a. E.g. using unknown 3rd party library because deadline is approaching

b. E.g. warnings from others about imminent danger (e.g. “look out for the car!”)

2. Inference: trust based on information, e.g. past performance, characteristics,

institutions
a. E.g. trust in brands or affiliation (weaker)

b. E.g. past performance (stronger)

c. E.g. trust in prior versions of software

3. Substitution: trust by implementing system to partly replace the need to trust

something (“Plan B”)
a. E.g. set an alarm on a second device in case the alarm on your phone doesn’t work

b. E.g. using unique, fake per-app emails for login, in case your personal info is leaked

Building Trust Into Software

● Stakeholders (Direct/Indirect)

● Pervasiveness

● Time

Building Trust Into Software

● Stakeholders (Direct/Indirect)
○ Identifying stakeholders allows us to focus our trust efforts.

○ E.g Patients are an indirect stakeholder for medical office use device

● Pervasiveness

● Time

Building Trust Into Software

● Stakeholders (Direct/Indirect)
○ Identifying stakeholders allows us to focus our trust efforts.

○ E.g Patients are an indirect stakeholder for medical office use device

● Pervasiveness
○ Pervasiveness may influence how we approach building in trust

○ E.g. Is it a critical infrastructure software or a just for personal use?

● Time

Building Trust Into Software

● Stakeholders (Direct/Indirect)
○ Identifying stakeholders allows us to focus our trust efforts.

○ E.g Patients are an indirect stakeholder for medical office use device

● Pervasiveness
○ Pervasiveness may influence how we approach building in trust

○ E.g. Is it a critical infrastructure software or a just for personal use?

● Time
○ Software timescale changes how we consider building in trust

○ E.g. will users be relying on it for a long time?

Impact of Technology on Trust

● Technology can lead to agential gullibility.
○ E.g. ChatGPT can hallucinate

Impact of Technology on Trust

● Technology can lead to agential gullibility.
○ E.g. ChatGPT can hallucinate

● Technology can require us to re-evaluate what we trust.
○ E.g. AI-generated/edited imagery

Thank you for all your hard work.
Best of luck on the final!!!
What questions do you have?

