Problem 4 (10 points)
Consider the following code:

void funcl(int& x) {
int y = computeY();
X += Y;
long running func_to_do_other_stuff();
}
void func2(int& x) {
int z = computeZ();
X = 2*¥X - z;
another_long_running_func();

}
int x = 0;

std::thread t1 = new std::thread(funcl, ref(x));

usleep(100000); /* Delays for 100 milliseconds */
std::thread t2 = new std::thread(func2, ref(x));
tl.join();

t2.jo0in();

std::cout << "The value of x is << X << std::endl;
Is the value that will be printed for x deterministic? If so, explain why; if not, explain why and modify the
code to fix the problem. You may assume that computeY and computeZ are deterministic.

Answer: there is a race condition in the code. Delaying for 100 ms will not guarantee that t1
modifies x before t2: it’s always possible that the scheduler could decide not to execute t1
for a long time, so that t2 ends up executing first, or even concurrently.

The solution is to add explicit synchronization, such as this:

void funcl(int& x, int& mod_done, std::mutex& m,
std::condition_variable any& tl1 modified x) {
int y = computeY();
X += Y;
m.lock();
mod_done = 1;
t1l modified _x.notify one();
m.unlock();
long running func_to_do_other_stuff();



void func2(int& x) {
int z = computeZ();
X = 2*¥X - z;
another_long_running_ func();

int x = 0;

std: :mutex m;

std::condition_variable_any t1 modified x;
int mod_done = 9;

std::thread tl1 = new std::thread(funcl, ref(x), ref(mod _done), ref(m),
ref(tl_modified x));
m.lock();
while (!mod_done) {
t1l modified x.wait();
}

m.unlock();
std::thread t2 = new std::thread(func2, ref(x));
tl.join();

t2.jo0in();
std::cout << “The value of x is “ << x << std::endl;



