
Problem 4 (10 points)

Consider the following code:

void func1(int& x) {
 int y = computeY();
 x += y;
 long_running_func_to_do_other_stuff();
}
void func2(int& x) {
 int z = computeZ();
 x = 2*x – z;
 another_long_running_func();
}
...
int x = 0;
...
std::thread t1 = new std::thread(func1, ref(x));
usleep(100000); /* Delays for 100 milliseconds */
std::thread t2 = new std::thread(func2, ref(x));
t1.join();
t2.join();
std::cout << "The value of x is " << x << std::endl;

Is the value that will be printed for x	deterministic? If so, explain why; if not, explain why and modify the
code to fix the problem. You may assume that computeY	and computeZ	are deterministic.

Answer: there is a race condition in the code. Delaying for 100 ms will not guarantee that t1
modifies x before t2: it’s always possible that the scheduler could decide not to execute t1
for a long time, so that t2 ends up executing first, or even concurrently.

The solution is to add explicit synchronization, such as this:

void func1(int& x, int& mod_done, std::mutex& m,
 std::condition_variable_any& t1_modified_x) {
 int y = computeY();
 x += y;
 m.lock();
 mod_done = 1;
 t1_modified_x.notify_one();
 m.unlock();
 long_running_func_to_do_other_stuff();
}

void func2(int& x) {
 int z = computeZ();
 x = 2*x – z;
 another_long_running_func();
}

...

int x = 0;
std::mutex m;
std::condition_variable_any t1_modified_x;
int mod_done = 0;

...

std::thread t1 = new std::thread(func1, ref(x), ref(mod_done), ref(m),

 ref(t1_modified_x));
m.lock();
while (!mod_done) {
 t1_modified_x.wait();
}
m.unlock();

std::thread t2 = new std::thread(func2, ref(x));

t1.join();
t2.join();
std::cout << “The value of x is “ << x << std::endl;

