C++ Classes Review

Additional Resources:
Sean Szumlanski’s awesome CS106B lecture notes
Cynthia Bailey + Julie Zelenski’'s awesome CS1068B slides

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared,
uploaded, or distributed. (without expressed written permission)

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1242/lectures/14-oop/
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1232/lectures/14-oop/14-Classes.pdf

What are classes?

Defining a Class
Instance Variables
Constructor
Methods

Destructor

cp -r /afs/ir/class/cslll/lecture-code/classes .

What are classes?

Defining a Class
Instance Variables
Constructor
Methods

Destructor

cp -r /afs/ir/class/cslll/lecture-code/classes .

What are classes?

A class lets you define your own custom variable type.

* You specify what data is inside it (instance variables), what it can do (public
methods), and how you create one (constructor)

» defined across two files: a header file and an implementation file

» Header file (.h/.hh): contains the interface — an outline of what the type can do, but not
the implementation

* Implementation file (.cc / .cpp): contains all method implementations - internal code

* Benefit: abstract away complexity of type into separate files

* Client (code that uses this variable type) vs. implementer (implementation of
class). Clients create instances of this class.

Example: Bank Account

BankAccount bal;

bal.deposit(2.00);

bal.withdraw(1.50);

cout << "Balance for first account is
<< bal.getBalance() << endl;

BankAccount ba2;

pa2.deposit(60.00);

pa2.withdraw(5.00);

pa2.withdraw(5.00);

cout << "Balance for second account is
<< ba2.getBalance() << endl;

Based on an example courtesy of Cynthia Bailey + Julie Zelenski’s awesome CS106B slides

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1232/lectures/14-oop/14-Classes.pdf

Example: Bank Account

We would like the following client functionality for the BankAccount type:
* When a bank account is created, it should start with a balance of O.

* void deposit(amount): this should deposit the specified amount. It does
nothing if the amount is negative.

 void withdraw(amount): this should withdraw the specified amount. It does
nothing if the amount exceeds the balance.

* double getBalance(): this should return the balance in the account.

Overall: a bank account encapsulates logic about its balance

What are classes?

Defining a Class
Instance Variables
Constructor
Methods

Destructor

cp -r /afs/ir/class/cslll/lecture-code/classes .

Defining a Class — Header File

// bankaccount.hh Tells the compiler "if you see this file more than once
#pragma once {(EEEEE——— @@ g . . ,
while compiling, ignore it after the first time" (so it doesn't

think you're trying to define things more than once).

class BankAccount {
public:
// client-accessible functionality/data goes here

private:
// private internal-only functionality/data goes here

s

Defining a Class — Header File

// bankaccount.hh
#pragma once

class BankAccount {
public:
// client-accessible functionality/data goes here

private:
// private internal-only functionality/data goes here

s

Rule of thumb: default to private unless there
IS a need to make something public. (don't
want client to be able to do things it shouldn’t)

Public vs. Private

int main() {
vector<int> nums;

nums.push _back(10);
nums.push _back(15);
nums.push _back(33);

// THIS WOULD BE SO BAD
nums.size = 1;

Example courtesy of Sean Szumlanski’'s awesome CS106B lecture notes

10

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1242/lectures/14-oop/

What are classes?

Defining a Class
Instance Variables
Constructor
Methods

Destructor

cp -r /afs/ir/class/csl1lll/lecture-code/classes .

11

Instance Variables / Fields / Member

Variables

// bankaccount.hh
#pragma once

class BankAccount {
public:
// client-accessible functionality/data goes here

private:
// private internal-only functionality/data goes here

// instance variables
double balance;

g Every BankAccount instance will have its own copy of
any instance variables. We declare instance variables in
the header file, but usually initialize them in the CC file In

the constructor. -

What are classes?

Defining a Class
Instance Variables
Constructor
Methods

Destructor

cp -r /afs/ir/class/cslll/lecture-code/classes .

13

A class’s constructor is called when a new variable of that type is created.

// client code - this calls the constructor
BankAccount bal;

// equivalent to

BankAccount bal();

14

A class’s constructor is called when a new variable of that type is created.

// client code - this calls the constructor
BankAccount *ba = new BankAccount;

// equivalent to

BankAccount *ba = new BankAccount();

You do not need to define a constructor in your class if you don’t need one (if
you don’t, C++ will just pretend you defined a constructor that is empty).

15

// bankaccount.hh
#pragma once

class BankAccount {

public:
// client-accessible functionality/data goes here
// constructor
BankAccount();

private:
// private internal-only functionality/data goes here
double balance;

}s

16

A constructor should perform any necessary initialization so the variable can be
used.

// bankaccount.cc
#include "bankaccount.hh"

BankAccount: :BankAccount() {
balance = 0;

}

Note: not every instance variable needs to be explicitly initialized.
For instance, built-in data structures (e.g., vector, map) are
automatically initialized to be empty when they are declared.

A class can have more than one constructor, and constructors can also take in

parameters. For example, let’s say we want to optionally let the client specify
the initial account balance:

// client code
BankAccount bal; // balance initialized to ©
BankAccount ba2(50); // balance initialized to 50

18

// bankaccount.hh
#pragma once

class BankAccount {
public:
// client-accessible functionality/data goes here
// constructor
BankAccount();
BankAccount(double initialAmount);

private:
// private internal-only functionality/data goes here
double balance;

}s

19

// bankaccount.cc
#include "bankaccount.hh"”

BankAccount: :BankAccount() {
balance = 0;

¥

BankAccount: :BankAccount(double initialAmount) {
balance = initialAmount;

¥

20

// bankaccount.hh
#pragma once

class BankAccount {
public:
// client-accessible
functionality/data goes here
BankAccount(double initialAmount);

private:
// private internal-only
functionality/data goes here
double balance = 9;

}s

In this case, could we also Initialize the
balance directly in the header file, and
then not need to have one of the
constructors?

21

// bankaccount.hh
#pragma once

class BankAccount {
public:
// client-accessible
functionality/data goes here
BankAccount(double initialAmount);

private:
// private internal-only
functionality/data goes here
double balance = 9;

}s

In this case, could we also Initialize the
balance directly in the header file, and
then not need to have one of the
constructors? Yes.

However, it's sometimes more common
to initialize in the constructor;
sometimes, we cannot initialize in the
header (e.qg., If its initialization depends
on a constructor parameter).

What are classes?

Defining a Class
Instance Variables
Constructor
Methods

Destructor

cp -r /afs/ir/class/cslll/lecture-code/classes .

23

// bankaccount.hh
#pragma once

class BankAccount {

public:
// client-accessible functionality/data goes here
BankAccount();
BankAccount(double initialAmount);

// public methods

void deposit(double amount);
void withdraw(double amount);
double getBalance();

private:
// private internal-only functionality/data goes here
double balance;

}s

24

// bankaccount.hh
#pragma once

class BankAccount {

public:
// client-accessible functionality/data goes here
BankAccount();
BankAccount(double initialAmount);

// public methods

void deposit(double amount);
void withdraw(double amount);
double getBalance();

private:
// private internal-only functionality/data goes here
void helperFn(); // private methods for internal-only use (e.g. helpers)

25

// bankaccount.cc
#include "bankaccount.hh"”

BankAccount: :BankAccount() {
balance = 0;

}

BankAccount: :BankAccount(double initialAmount) {
balance = initialAmount;

}

void BankAccount: :deposit(double amount) {
if (amount > 0) {
balance += amount;

}

26

// bankaccount.cc
#include "bankaccount.hh"”

BankAccount: :BankAccount() {

}

balance = 0;

BankAccount: :BankAccount(double initialAmount) {

}

balance = initialAmount;

void BankAccount: :deposit(double amount) {

if (amount > @) {
balance += amount;

}

BankAccount:: means the
method is within the BankAccount
class, so it can access al
members (e.g. instance
variables).

27

// bankaccount.cc
#include "bankaccount.hh"”

void BankAccount: :withdraw(double amount) {
if (amount <= balance) {
balance -= amount;

¥
}

double BankAccount::getBalance() {
return balance;

}

28

// bankaccount.cc
#include "bankaccount.hh"”

void myHelper() {
if (balance > @) { // error: not a BankAccount method, can’t access balance!

If you want to make helper functions that need to access
class members (e.g. instance variables), make sure to
define them in the private section of the header and
implement them as ClassName: :method. If you
instead just declare a regular helper function, you cannot
access class members!

)

// bankaccount.hh
#pragma once

class BankAccount {

private:
void myHelper();

b

// bankaccount.cc
#include "bankaccount.hh"

void BankAccount: :myHelper() {
if (balance > @) { // ok!

30

Methods are “called on” a particular instance and operate on a particular
instance. Here, deposit is “called on” bal:

BankAccount bal;
bal.deposit(2.00);

Within methods, the this keyword is a pointer to the instance the method is
called on:

void BankAccount: :deposit(double amount) {
// for above code, "this" would be a pointer to bal
cout << this << endl; // prints address of current object

31

Why is the this keyword useful? Useful in specific cases such as:

* Needing to explicitly specify that we are referring to an instance variable vs. a
local variable:

BankAccount: :BankAccount(double balance) {
this->balance = balance;

}

(side note — an easy way to avoid the need for this is to just use separate names
for the parameter and instance variable)

* If you need to get a pointer to the current object to pass as a parameter or
save somewhere.

32

What are classes?

Defining a Class
Instance Variables
Constructor
Methods

Destructor

cp -r /afs/ir/class/cslll/lecture-code/classes .

33

A class’s destructor is called automatically when a variable of that type is
destroyed. It is destroyed if it goes out of scope or is deleted from the heap.

The destructor should do any internal cleanup required before the object goes
away.

// client code
if (...) A
BankAccount ba(50);

} // triggers destructor for ba

34

A class’s destructor is called automatically when a variable of that type is
destroyed. It is destroyed if it goes out of scope or is deleted from the heap.
The destructor should do any internal cleanup required before the object goes
away.

// client code
BankAccount *ba = new BankAccount();

delete ba; // triggers destructor for ba

You do not need to define a destructor in your class if you don’t need one (if you
don’t, C++ will just pretend you defined a destructor that is empty). 35

Destructors are commonly used to free any heap-allocated instance variables (if
any). You may also have other necessary logic that needs to run when an object
goes away.

36

// bankaccount.hh
#pragma once

class BankAccount {

public:
// client-accessible functionality/data goes here
BankAccount();
BankAccount(double initialAmount);

void deposit(double amount);
void withdraw(double amount);
double getBalance();

// destructor
~BankAccount();
private:
// private internal-only functionality/data goes here
double balance;

37

// bankaccount.cc
#include "bankaccount.hh"”

BankAccount: :~BankAccount() {
// code here runs before the instance goes away

}

38

Other Notes

* “using namespace std” at the top of ccfiles, and std:: in front of types in

header files:

* A namespace is like a named grouping and allows us to have multiple things in our
program with the same. Common built-in C++ types like vector, map, string, etc. are in
the “std” namespace.

* By default, we need to include std:: in front of these types to tell C++ where to find
them.

* However, we commonly avoid this in .cc files by putting using namespace std at the top
of the file. (Tells C++: “assume I’'m referring to the std namespace if | don’t specify and
you don’t know which namespace something is in”)

* You usually shouldn’t put “using namespace std” at the top of header (.h/.hh) files
because this will cause that namespace to be included in any file that imports it, which
they may not want. For this reason, you'll commonly see std:: in header files where we
need to refer to std types.

39

Other Notes

 Classes vs structs: similar, but structs default to public access for all members.
Classes default to private members, which encourages the idea of abstraction:
only exposing functionality and data that is important for the client to see.

* Anything in the private section is accessible only within that class. You can
define various components there: instance variables, private methods, struct
definitions, etc.

40

Demo

bankaccount.hh, bankaccount.cc, client.cc

cp -r /afs/ir/class/cslll/lecture-code/classes .

41

What are classes?

Defining a Class
Instance Variables
Constructor
Methods

Destructor

cp -r /afs/ir/class/cslll/lecture-code/classes .

42

Pointers and Memory Review

Additional Resources:

Sean Szumlanski’s awesome CS106B lecture notes for C++
(pointers/arrays and heap)

CS107 prior guarter course website for slides for C (strings,
pointers, heap)

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared, 43
uploaded, or distributed. (without expressed written permission)

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1242/lectures/15-pointers-and-arrays/
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1242/lectures/16-dynamic-memory-management/
https://web.stanford.edu/class/archive/cs/cs107/cs107.1236/

Pointers overview

"Address of” vs. “pass by reference”

C arrays vs. pointers

C Strings

Heap Allocation

44

Pointers overview

"Address of” vs. “pass by reference”
C arrays vs. pointers
C Strings

Heap Allocation

45

Pointers and Memory

A pointer is a variable that stores a memory address. Address Value
 Memory is a big array of bytes, and each byte has a
unique numeric index that is commonly written in
hexadecimal. A pointer stores one of these ox105| "\@'
indexes”. ovioal e
* Pointers are also essential for allocating memory on 1
the heap. ox163
ox102| P’
ox101| P’
ox1ee| ‘@’

46

Pass By Value

STACK

When you pass a value as a parameter, C/C++ Address Value
passes a copy of that value.

. . . [x oxife| 2
void myFunc(int val) { main() .

val = 3;

¥

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2

47

Pass By Value

STACK

When you pass a value as a parameter, C/C++ Address Value
passes a copy of that value.

. . . [x oxife| 2
void myFunc(int val) { main() .

val = 3;

¥

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

48

Pass By Value

STACK
When you pass a value as a parameter, C/C++ Address Value

passes a copy of that value.

x Ox1fo 2

void myFunc(int val) { main() —

) val = 3; myFunc () val @xl@!

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

49

Pass By Value

STACK
When you pass a value as a parameter, C/C++ Address Value

passes a copy of that value.

x Ox1fo 2

void myFunc(int val) { main() —

) val = 3; myFunc () val @xl@!

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2

50

Pass By Value

When you pass a value as a parameter, C/C++ Add peSsT_éCKValue

passes a copy of that value.

x Ox1fo 2

void myFunc(int val) { main() —

) val = 3; myFunc () val @xl@!

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2

51

Pass By Value

STACK

When you pass a value as a parameter, C/C++ Address Value
passes a copy of that value.

. . . [x oxife| 2
void myFunc(int val) { main() .

val = 3;

¥

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

52

Pointers allow us to pass around the location of data so that the original data
can be modified in other functions.

Example: | want to write a function myFunc that can change the value of an
existing integer to be 3.

int main(int argc, char *argv[]) {
int x = 2;
myFunc(???);
printf("%d", x); // want to print 3

53

int x = 2;

// Make a pointer that stores
// (& means "address of")
int *xPtr = &x;

the address of x.

If declaration: “pointer”
ex: int *is "pointer to an int”

If operation: "dereference/the value at address’
ex: *num is "the value at address num"

)

// Dereference the pointer to go to that address.

// (* means "dereference")

printf("%d", *xPtr); // prints 2

: . TA
A pointer lets us pass where a particular Addpes_c,sCK

Value
instance of data is, so it can be modified.
. . . : [x oxife| 2
void myFunc(int *intPtr) { main())
*intPtr = 3;
}
int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;

printf("%d", x); // 3!

55

: . TA
A pointer lets us pass where a particular Addpes_c,sCK

Value
instance of data is, so it can be modified.
. . . : [x oxife| 2
void myFunc(int *intPtr) { main() -
*intPtr = 3;
}
int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x);

printf("%d", x); // 3!

56

: . TA
A pointer lets us pass where a particular Addpes_c,sCK

Value

instance of data is, so it can be modified.

x Ox1fo 2

void myFunc(int *intPtr) { main()
*IntPtr = 3; .
) myFunc() intPtr ox16

——
e

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;
printf("%d", x); // 3!

57

: . TA
A pointer lets us pass where a particular Addpes_c,sCK

Value

instance of data is, so it can be modified.

x Ox1fo 2

void myFunc(int *intPtr) { main()
*intPtr = 3; .
) myFunc () intPtr ox16

——
e

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;
printf("%d", x); // 3!

58

: . TA
A pointer lets us pass where a particular Addpes_c,sCK

Value

instance of data is, so it can be modified.

x Ox1fo 3

void myFunc(int *intPtr) { main()
*intPtr = 3; .
) myFunc () intPtr ox16

——
e

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;
printf("%d", x); // 3!

59

: . TA
A pointer lets us pass where a particular Addpes_c,sCK

Value
instance of data is, so it can be modified.
. . . : [x oxifefl 3
void myFunc(int *intPtr) { main() -
*intPtr = 3;
}
int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;

printf("%d", x); // 3!

60

: . STACK
A pointer lets us pass where a particular Address

instance of data is, so it can

void myFunc(int *intPtr) {

*intPtr = 3;
}

int main(int argc, cha
int *xPtr;
myFunc(xPtr);

be modified.

Value

: [thr‘ Ox1f0
main()

PP’

n *gpovyl 1) {

Would this also work?

61

STACK

A pointer lets us pass where a particular Address Value
instance of data is, so it can be modified.

. . . . [xPtr Ox1fe| 227
void myFunc(int *intPtr) { main()

*intPtr = 3;
}

int main(int argc, cha
int *xPtr;
myFunc (xPtr);

~n *gpovl 1) {

Would this also work? The types match, and this would
compile, but this wouldn’t work. The reason is we are
not making space for an int; we are making space for a
pointer, which is not initialized. myFunc will then try to
go to the memory address stored in the pointer, even
though the pointer is not referring to valid memory!

STACK

A pointer lets us pass where a particular Address Value
instance of data is, so it can be modified.
. xPtr Ox1fo| 22°?
void myFunc(int *intPtr) { main()
*intPtr = 3; B
) myFunc() | intPtr ox10 !
int main(int argc, char *arovl1) {
int *x; Would this also work? The types match, and this would
myFunc(x); compile, but this wouldn’t work. The reason is we are
printf("%d", *X); not making space for an int; we are making space for a
) s pointer, which is not initialized. myFunc will then try to

go to the memory address stored in the pointer, even

though the pointer is not referring to valid memory!

Pointer Arithmetic

Pointer arithmetic does not work in bytes. Instead, it

works in the size of the type it points to.
Address Value

// nums points to an int array)
int *nums = .. // e.g. Oxffo L

ool 16
int *numsl = nums + 1; // e.g. Oxff4 e

: oxrecl 34
int *nums3 = nums + 3; // e.g. Oxffc a

oxfeel 12

. @xfﬂE 23
orintf("%d", *nums); // 52 1

oxffaf 22

orintf("%d", *numsl); // 23
orintf("%d", *nums3); // 34

64

Pointer Arithmetic

Pointer arithmetic does not work in bytes. Instead, it
works in the size of the type it points to.

// nums points to a short array

short *nums = .. // e.g. Oxffto
nums + 1; // e.g. Oxff2
nums + 3; // e.g. Oxff6

short *numsl

short *nums3

orintf("%h", *nums); // 12
orintf("%h", *numsl); // 54
orintf("%h", *nums3); // 23

Address

Value

Oxffal

oxffet

oxffel

23

oxff4]

333

OxFf2l

54

oxffal

12

65

Pointer Arithmetic

Pointer arithmetic with two pointers does not give the byte

difference. Instead, it gives the number of places they STACK
differ by. Address Value
// nums points to an int array oxtoes] 1
int *nums = .. // e.g. Oxffo exleeeE 16
int *nums3 = nums + 3; // e.g. Oxffc OXH:CE 34
int diff = nums3 - nums; // 3 oxF e 12
oxreal 23
Y

66

A struct is a way to define a new variable type that is a group of other variables.

typedef struct {
int month;
int day;

} date;

date today; // construct structure instances

today.month = 1;
today.day = 28;

date new years eve = {12, 31}; // shorter initializer syntax

67

The arrow operator lets you access the field of a struct pointed to by a pointer.

void advance day(date *d) {
d->day++; // equivalent to (*d).day++;
}

int main(int argc, char *argv[]) {
date my date = {1, 28};
advance_day(&my_date);

printf("%d", my date.day); // 29
return 0;

68

Pointers overview

“Address of” vs. "pass by reference”

C arrays vs. pointers

C Strings

Heap Allocation

69

“Address of” vs. Pass by Reference

* In both Cand C++, the "&” operator is the “address of” operator; it gets the
address of a variable.

* In C++, "&” also has another (!) common meaning, which is confusing; when
used in a function signature, it means you are passing a parameter by
reference.

void myFunc(int& num) {
num = 3; // DOES change the original value in the caller!
}

int main() A
int x = 2;
myFunc(x);
// now x is 3!

70

“Address of” vs. Pass by Reference

Pass by reference is like an “automatically-dereferenced pointer”; it’s essentially
passing a pointer, but automatically dereferencing it before use.

void myFunc(int& num) {
num = 3; // DOES change the original value in the caller!
¥

int main() {
int x = 2;
myFunc(x);
// now x 1is 3!

71

“Address of” vs. Pass by Reference

When should we use pointers vs. pass by reference?

* Cdoesn’t have pass by reference, so we must use pointers in C programs to
achieve this kind of behavior.

* In C++, pass by reference is easier to work with than pointers, and can replace
some of the uses of pointers in our programs. But we will still need pointers in
other places, such as heap allocation.

72

Pointers overview

"Address of” vs. “pass by reference”

Arrays vs. pointers

C Strings

Heap Allocation

73

When you declare a stack array, contiguous memory is
allocated to store the contents of the entire array.

char str[6];
strcpy(str, "apple");

The array variable (e.g. str) is not a pointer; it refers to the
entire array contents. In fact, sizeof returns the size of the
entire array!

// 6

int arrayBytes = sizeof(str);

STACK

Address Value
ox105| '\0'

oxle4| ‘e’

ox103| 1’

0x102| P’

ox1el| P’

str— oxlee| 'a’

74

An array variable refers to an entire block of memory. You cannot reassign an
existing array to be equal to a new array.

int nums[] = {1, 2, 3};
int nums2[] = {4, 5, 6, 7};
hums = nums2; // not allowed!

A stack array’s size cannot be changed once you create it; you must create
another new array instead. (heap-allocated arrays can be resized using realloc).

75

Arrays as Parameters

When you pass an array as a parameter, C makes a
copy of the address of the first array element, and
passes it (a pointer) to the function.

main()
void myFunc(char *myStr) {
}
int main(int argc, char *argv[]) {
char str[3]; myFunc ()

strcpy(str, "hi");
myFunc(str);

—

—

STACK

Address

Value

Ox1f2
Ox1f1l

str < ox1fo

oxff
Oxfe
oxfd
Oxfc
Oxftb
Oxfa
Oxf9
mystr oxfs

"\Q'

Arrays as Parameters

When you pass an array as a parameter, C makes a
copy of the address of the first array element and
passes it (a pointer) to the function.

void myFunc(char *myStr) { main()

¥

char str[3];
strcpy(str, "hi");
// equivalent

char *arrPtr = str;
myFunc(arrPtr);

—

STACK

Address

Value

Ox1f2
Ox1f1
str<_0x110
arrPtr 0xles

myStr ox1e
int main(int argc, char *argv[]) { myFunc(){

77

Arrays as Parameters

This also means we can no longer get the full size of

the array using sizeof, because now it is just a
pointer.

void myFunc(char *myStr) {
int size = sizeof(myStr); // 8
}

int main(int argc, char *argv[]) {
char str[3];
strcpy(str, "hi");
int size = sizeof(str); // 3
myFunc(str);

main()

myFunc ()

—

e ——

STACK

Address Value
ox1f2| "\0'
Ox1f1 i

str < ox1fo

oxff
Oxfe
oxfd
Oxfc
Oxftb
Oxfa
Oxf9
mystr oxfs

Quirks of Arrays

One major quirk of arrays is using & directly on an array
doesn’t do anything (huh?).

int nums[4] = {4, 24, 121, -2};
int *ptr = nums; // 0x100
int *otherPtr = &nums; // also 9x100!!

Why does this happen? An array is not a pointer, but rather
represents a chunk of memory storing its elements. When
we use &, C says “oh, the address of the array? Sure, here’s
the starting address of the array”. But we can already get
that by just setting a pointer equal to the array.

Address Value
ox10c| -2
ox108| 121
ox104| 24
9x100 4

79

& Directly On An Array

One major quirk of arrays is using & directly on an array doesn’t do anything.

Example where this causes a problem — |let’s say we want to get a double
pointer to an array (pointer to something that points to the first element):

int nums[4] = {4, 24, 121, -2};

// goal

int **arrPtr = ???;

**arrPtr = 15; // should change first elem to 15

// none of these are what we want ®

int **arrPtr = nums; // points to first elem

int **arrPtr = &nums; // also points to first elem!
int **arrPtr = &nums[0]; // also points to first elem!!

80

& Directly On An Array

nums 4 24 121 -2

ox100 | ——

We need to create
this as well

int nums[4] = {4, 24, 121, -2};
Ox412 int *ptr = nums; // ©0x100
int **arrPtr = &ptr; // 0x412

arrPtr

81

Arrays vs. Pointers Summary

* When you create an array, you are making space for each element in the array.
 When you create a pointer, you are making space for an 8 byte address.

* Arrays “decay to pointers” when you perform arithmetic or pass as
parameters.

* You can set a pointer equal to an array; that pointer will point to the array’s
first element

e &arr does nothing on arrays, but &ptr on pointers gets its address
* sizeof(arr) gets the size of an array in bytes, but sizeof(ptr) is always 8

82

Pointers overview

"Address of” vs. “pass by reference”

C arrays vs. pointers

C Strings

Heap Allocation

83

C strings are arrays of characters ending with a null-terminating character '\0'.

index
value IHI lel Ill lll IOI l,l 1 1 IWI IOI Ir‘l lll ldl l!l l\el

String operations such as strlen use the null-terminating character to find the
end of the string.

Side note: use strlen to get the length of a string. Don’t use sizeof!

84

Common string.h Functions

Function

Description

strlen(str)

returns the # of chars in a C string (before null-terminating character).

strcmp(strl, str2),
strncmp(stril, str2, n)

compares two strings; returns O if identical, <0 if strl1 comes before
str2in alphabet, >0 if strl comes after str2in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle)

string search: returns a pointer to the start of the first occurrence of
needle in haystacR, or NULL if needle was not found in haystacR.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returnsthe length of the initial part of str which contains only
charactersin accept. strcspn returns the length of the initial part of
str which does not contain any charactersin reject.

We can combine pointer arithmetic and copying to make any substrings we’d
like.

// Want just "ace
char stri[8];
strcpy(strl, "racecar");

char str2[4];

strncpy(str2, strl + 1, 3);

str2[3] = "\0';

printf("%s\n", strl); // racecar
printf("%s\n", str2); // ace

86

char * vs. char|[]

e char * is an 8-byte pointer — it stores an address of a character
* char[] is an array of characters — it stores the actual characters in a string

 When you pass a char[] as a parameter, it is automatically passed as a char *
(pointer to its first character)

87

char * vs. char|[]

char myString]]
VS
char *myString

You can create char * pointers to point to any character in an existing string and

reassign them since they are just pointer variables. You cannot reassign an
array.

char myString[6];
strcpy(myString, "Hello");
myString=—"Anotherstring"; // not allowed!

char *myOtherString = myString;
myOtherString = somethingElse; // ok

88

When we declare an array of characters,
contiguous memory is allocated on the stack to
store the contents of the entire array.

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");

main()

STACK

Address

Value

0x105
Ox104
0x103
0x102
Ox101
str—_ox100

89

When we declare a char *, we allocate space on
the stack to store an address, not actual characters.

But we can still generally use char * the same as
charl].

int main(int argc, char *argv[]) { ,
char str[6]; main()
strcpy(str, "apple");
char *strAlt = str;

STACK

Address Value
ox105| '\0'

ox104| ‘e

ox103 | ‘'1!

0x102 | "pb"

ox101| “p"
str—_ox100l 'a'
strAlt oxf [Ox100

90

Strings as Parameters

When we pass an array as a parameter, C makes a

copy of the address of the first array element and
passes it to the function.

void myFunc(char *myStr) {
"t main
) ()

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
. myFunc ()

——
e

STACK

Address

Value

0x105
Ox104
0x103
0x102
Ox101
str—_ox100

myStr Oxf

Strings as Parameters

This means if we modify characters in myFunc,
the changes will persist back in main!

void myFunc(char *myStr) {
mystr[4] = 'y’;

} main()
int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
printf("%s", str); // apply
. myFunc ()

||

Add r*engAC\};alue
Ox105| *\0'
0x104 |y
ox1e3| “1°
0x102 | "pb"
Ox101| 'p’

str—_oxl100l 'a'

myStr

Oxf

Key C String Behaviors

If we create a string as a char|[], we can modify its characters because its memory
lives in our stack space.

We cannot set a char[] equal to another value, because it is not a pointer; it refers
to the block of memory reserved for the original array.

If we pass a char[] as a parameter, set something equal to it, or perform arithmetic
with it, it’s automatically converted to a char *.

We can set a char * equal to another value, because it is a reassign-able pointer.

Adding an offset to a C string gives us a substring that many places past the first
character.

If we change characters in a string parameter, these changes will persist outside of the
function.

93

C vs. C++ Strings

C++ has an actual string variable type (hooray!) that provides more helpful
functionality; for this reason, we want to prefer C++ strings to C strings where
we can.

* More C string information: “man string” or other resources such as
https://cplusplus.com/reference/cstring/

* More C++ string information: resources such as
https://cplusplus.com/reference/string/string/

94

https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/string/string/

Pointers overview

"Address of” vs. “pass by reference”
C arrays vs. pointers
C Strings

Heap Allocation

95

Memory Layout

* The stack is the place where all local variables and
parameters live for each function. A function’s stack
“frame” goes away when the function returns. Stack

* The stack grows downwards when a new function is @
called and shrinks upwards when the function is

finished. >

* The heap is a part of memory below the stack that you Data (includes Heap)
can manage yourself. Unlike the stack, the memory
only goes away when you delete it yourself.

* Unlike the stack, the heap grows upwards as more Slols

memory is allocated. 0

* The heap is dynamic memory — memory that can be
allocated, resized, and freed during program runtime. %6

The Heap

* In C, we can use malloc/realloc/free to manage heap memory.

* In C++, we can still use these C functions, but also have new/delete to manage
heap memory (and prefer these over lower-level functions where possible).

Rule of thumb: we want to default to using the stack
unless there is a reason we need heap allocation.
Heap allocation is more complex and prone to error,
SO0 make sure to only use it where needed! (e.g. we
need a resizable array, or we need a variable to not go

away, etc.)

97

Key C Heap Functions

void *malloc(size t size);

malloc takes in the number of bytes you want and returns a pointer to the
starting address of the new memory on the heap. The memory is not
initialized!

void free(void *ptr);

free marks the heap memory pointed to by ptr as free, meaning that we will no
longer be using it.

void *realloc(void *ptr, size t size);

The realloc function takes an existing allocation pointer and resizes to a new
requested size. It returns a pointer to the start of the larger allocation.

98

The Heap in C

char *strdup(char *s);

strdup is a convenience function that returns a null-terminated, heap-
allocated string with the provided text, instead of you having to malloc and

copy in the string yourself.

99

The Heap in C++

In C++, we don’t need to allocate bytes manually (hooray!). Instead, the new
operator lets us allocate space for an entire type or array.

// Allocating an int on the heap
int *numPtr = malloc(sizeof(int)); // C style, manually allocating 4 bytes
int *numPtr = new int; // C++ style, less error-prone!

// Allocating an array of 4 ints on the heap
int *nums = malloc(sizeof(int) * 4); // C style, manually allocating 16 bytes
int *nums = new int[4]; // C++ style, less error-prone!

100

The Heap in C++

In C++, to free a heap allocation, we can use delete which, like free, deletes the
heap memory pointed to by the specified pointer.

// Allocating and then deleting an int
int *numPtr = new int;

delete numPtr;

// Allocating and then deleting an array (note [] after delete)
int *nums = new int[4];

delete[] nums;

101

Memory Leaks

A memory leak is when you do not free memory you previously allocated.

* OQur program is responsible for cleaning up any memory it allocates but no
longer needs.

* If we never free any memory and allocate an extremely large amount, we may
run out of memory in the heap!

* However, memory leaks rarely (if ever) cause crashes.

* We recommend not to worry about freeing memory until your program is
written. Then, go back and free memory as appropriate.

* Valgrind is a very helpful tool for finding memory leaks! See
http://cs107.stanford.edu/resources/valgrind.html for a helpful guide.

102

http://cs107.stanford.edu/resources/valgrind.html

Recap

Pointers overview

"Address of” vs. “pass by reference”

C arrays vs. pointers

C Strings

Heap Allocation

103

	Slide 1: C++ Classes Review
	Slide 2: Overview
	Slide 3: Overview
	Slide 4: What are classes?
	Slide 5: Example: Bank Account
	Slide 6: Example: Bank Account
	Slide 7: Overview
	Slide 8: Defining a Class – Header File
	Slide 9: Defining a Class – Header File
	Slide 10: Public vs. Private
	Slide 11: Overview
	Slide 12: Instance Variables / Fields / Member Variables
	Slide 13: Overview
	Slide 14: Constructor
	Slide 15: Constructor
	Slide 16: Constructor
	Slide 17: Constructor
	Slide 18: Constructor
	Slide 19: Constructor
	Slide 20: Constructor
	Slide 21: Constructor
	Slide 22: Constructor
	Slide 23: Overview
	Slide 24: Methods
	Slide 25: Methods
	Slide 26: Methods
	Slide 27: Methods
	Slide 28: Methods
	Slide 29: Methods
	Slide 30: Methods
	Slide 31: this
	Slide 32: this
	Slide 33: Overview
	Slide 34: Destructor
	Slide 35: Destructor
	Slide 36: Destructor
	Slide 37: Destructor
	Slide 38: Destructor
	Slide 39: Other Notes
	Slide 40: Other Notes
	Slide 41: Demo
	Slide 42: Recap
	Slide 43: Pointers and Memory Review
	Slide 44: Overview
	Slide 45: Overview
	Slide 46: Pointers and Memory
	Slide 47: Pass By Value
	Slide 48: Pass By Value
	Slide 49: Pass By Value
	Slide 50: Pass By Value
	Slide 51: Pass By Value
	Slide 52: Pass By Value
	Slide 53: Pointers
	Slide 54: Pointers
	Slide 55: Pointers
	Slide 56: Pointers
	Slide 57: Pointers
	Slide 58: Pointers
	Slide 59: Pointers
	Slide 60: Pointers
	Slide 61: Pointers
	Slide 62: Pointers
	Slide 63: Pointers
	Slide 64: Pointer Arithmetic
	Slide 65: Pointer Arithmetic
	Slide 66: Pointer Arithmetic
	Slide 67: Structs
	Slide 68: Structs
	Slide 69: Overview
	Slide 70: “Address of” vs. Pass by Reference
	Slide 71: “Address of” vs. Pass by Reference
	Slide 72: “Address of” vs. Pass by Reference
	Slide 73: Overview
	Slide 74: Arrays
	Slide 75: Arrays
	Slide 76: Arrays as Parameters
	Slide 77: Arrays as Parameters
	Slide 78: Arrays as Parameters
	Slide 79: Quirks of Arrays
	Slide 80: & Directly On An Array
	Slide 81: & Directly On An Array
	Slide 82: Arrays vs. Pointers Summary
	Slide 83: Overview
	Slide 84: C Strings
	Slide 85: Common string.h Functions
	Slide 86: Substrings
	Slide 87: char * vs. char[]
	Slide 88: char * vs. char[]
	Slide 89: char[]
	Slide 90: char *
	Slide 91: Strings as Parameters
	Slide 92: Strings as Parameters
	Slide 93: Key C String Behaviors
	Slide 94: C vs. C++ Strings
	Slide 95: Overview
	Slide 96: Memory Layout
	Slide 97: The Heap
	Slide 98: Key C Heap Functions
	Slide 99: The Heap in C
	Slide 100: The Heap in C++
	Slide 101: The Heap in C++
	Slide 102: Memory Leaks
	Slide 103: Recap

