
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 10
Pipes

2

CS111 Topic 2: Multiprocessing

Multiprocessing
Introduction

Managing
processes and
running other

programs

Inter-process
communication

with pipes

Lecture 8 Lecture 9 Today / Lecture 11

assign3: implement your own shell!

Key Question: How can our program create and interact with other programs? How
does the operating system manage user programs?

3

Learning Goals

• Learn about pipe and how we can create a communication channel between
processes

• Understand how file descriptors are duplicated across processes

• Learn about dup2 and how to rewire file descriptors like stdin/stout/stderr

• Learn the steps to implement pipelines in our shell

4

Plan For Today

• Recap: fork, waitpid, execvp and our first shell

• Shell Feature Demo: pipes

• pipe() system call

• Example: Parent-child pipe

• dup2() and rewiring file descriptors

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

5

Plan For Today

• Recap: fork, waitpid, execvp and our first shell

• Shell Feature Demo: pipes

• pipe() system call

• Example: Parent-child pipe

• dup2() and rewiring file descriptors

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

6

waitpid()

A system call that a parent can call to wait for its child to exit:

pid_t waitpid(pid_t pid, int *status, int options);

• pid: the PID of the child to wait on, or -1 to wait for any one child

• status: where to put info about the child's termination (or NULL)

• options: optional flags to customize behavior (always 0 for now)

• the function returns when the specified child process exits

• returns the PID of the child that exited, or -1 on error (e.g. no child to wait on)

• If the child process has already exited, this returns immediately - otherwise, it blocks

• also cleans up the state of the child that was waited on

7

execvp()

execvp is a function that lets us run another program in the current process.

int execvp(const char *path, char *argv[])

It runs the executable at the given path, completely wiping/clearing out the current
process.

• If successful, execvp never returns in the calling process

• If unsuccessful, execvp returns -1

• argv is NULL-terminated arguments array passed to new program’s main function.

• path should generally be argv[0] for our purposes (since program name is first argv
argument)

Key idea: a parent can still wait on a child that calls execvp

8

execvp()

// execvp-demo.c
int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 char *args[] = {"/bin/ls", "-l", "/usr/class/cs111/lecture-code",
 NULL};
 execvp(args[0], args);
 printf("This only prints if an error occurred.\n");
 return 0;
}

$./execvp-demo
Hello, world!
total 4
drwx------ 2 troccoli operator 2048 Oct 9 16:21 lect5
drwx------ 2 troccoli operator 2048 Oct 13 22:19 lect9

9

Implementing a Shell

A shell is essentially a program that repeats asking the user for a command and
running that command

How do we run a command entered by the user?

1. Call fork to create a child process

2. In the child, call execvp with the command to execute

3. In the parent, wait for the child with waitpid

For assign3, you’ll use this pattern to build your own shell, stsh ("Stanford shell")
with various functionality of real Unix shells.

10

First Shell Solution

void runPipeline(const pipeline& p) {
 command cmd = p.commands[0]; // get tokenized version of command

 // Step 1: fork off a child process to run the command

 pid_t pidOrZero = fork();

 if (pidOrZero == 0) {

 // Step 2: if we are the child, execute the command

 execvp(cmd.argv[0], cmd.argv);

 // If the child gets here, there was an error

 throw STSHException(string(cmd.argv[0]) + ": Command not found.");

 }

 // Step 3: if we are the parent, wait for the child

 waitpid(pidOrZero, NULL, 0);

}
1. Call fork to create a child process

2. In the child, call execvp with the command to execute

3. In the parent, wait for the child with waitpid

11

Terminating the Child Process

void runPipeline(const pipeline& p) {
 command cmd = p.commands[0];

 // Step 1: fork off a child process to run the command

 pid_t pidOrZero = fork();

 if (pidOrZero == 0) {

 // Step 2: if we are the child, execute the command

 execvp(cmd.argv[0], cmd.argv);

 // If the child gets here, there was an error

 throw STSHException(string(cmd.argv[0]) + ": Command not found.");

 }

 // Step 3: if we are the parent, wait for the child

 waitpid(pidOrZero, NULL, 0);

} assign3 starter terminates any child process that throws an

exception. If we omit this line and execvp fails, the child will continue

executing – calling waitpid, returning back to main, itself then also

running the prompting code intended only for the parent!

12

Demo: first-shell-soln.cc

13

Plan For Today

• Recap: fork, waitpid, execvp and our first shell

• Shell Feature Demo: pipes

• pipe() system call

• Example: Parent-child pipe

• dup2() and rewiring file descriptors

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

14

Additional Shell Features

There are many more features from full shells that our shell could support:

• Running commands in the background (put ”&” after command)

• Ctl-c to terminate a program

• Chaining multiple commands together (a “pipeline”)

• Saving a command’s output to a file, or reading a command’s input from a file

15

Additional Shell Features

There are many more features from full shells that our shell could support:

• Running commands in the background (put ”&” after command)

• Ctl-c to terminate a program

• Chaining multiple commands together (a “pipeline”)

• Saving a command’s output to a file, or reading a command’s input from a file
(next time)

You’ll get to fully implement both features on assign3!

16

Demo: shell pipelines

Key Unix idea: chaining the output (STDOUT) of one command to be the input (STDIN)
of another.

Each command doesn’t need to know it’s part of a pipeline!

Commands run in parallel – though some may wait for all input before sending their
output.

17

How do we implement shell pipelines?

Let’s focus on two-command pipelines for now. How can we implement this?

1. Create a “magic portal” that allows data to be sent between two processes

2. Spawn 2 child processes (1 per command)

3. Connect one end of that portal to the first child’s STDOUT, and the other end
to the second child’s STDIN

First child Second child

STDIN STDOUT STDERR STDIN STDOUT STDERR

Terminal “Magic portal” Portal image unmodified, CC credit

https://pixexid.com/image/a-mesmerizing-cgi-render-of-a-wormhole-bending-space-and-time-surrounded-by-bri-d2hga3nz

18

How do we implement shell pipelines?

Three key questions:

1. What the heck is a “magic portal” and how do we create one?

2. How do we share this “magic portal” between processes?

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?

First child Second child

STDIN STDOUT STDERR STDIN STDOUT STDERR

Terminal “Magic portal” Portal image unmodified, CC credit

https://pixexid.com/image/a-mesmerizing-cgi-render-of-a-wormhole-bending-space-and-time-surrounded-by-bri-d2hga3nz

19

How do we implement shell pipelines?

Three key questions:

1. What the heck is a “magic portal” and how do we create one?
The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork() (plus a new property of execvp we’ll see later)

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call

20

How do we implement shell pipelines?

Three key questions:

1. What the heck is a “magic portal” and how do we create one?
The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork() (plus a new property of execvp we’ll see later)

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call

21

Plan For Today

• Recap: fork, waitpid, execvp and our first shell

• Shell Feature Demo: pipes

• pipe() system call

• Example: Parent-child pipe

• dup2() and rewiring file descriptors

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

22

“Magic Portal”: pipe() System Call

int pipe(int fds[]);

The pipe system call gives us back two file descriptors, where everything written
to one can be read from the other.

• Specifically: populates the 2-element array fds with the two file descriptors.
Everything written to fds[1] can be read from fds[0]. Tip: you learn to read
before you learn to write (read = fds[0], write = fds[1]).

• Returns 0 on success, or -1 on error.

Imagine: like opening the same file twice, once for reading and once for writing.

Why doesn’t it give back 1 read/write file descriptor? Can be at different
places reading vs. writing.

23

pipe() Within 1 Process

static const char * kPipeMessage = "this message is coming via a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);

 // Write message to pipe (assuming all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe (assume all bytes read immediately)
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

$./pipe-demo
Message read: this message is coming via a pipe.

24

How do we implement shell pipelines?

Three key questions:

1. What the heck is a “magic portal” and how do we create one?
The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork() (plus a new property of execvp we’ll see later)

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call

25

pipe() and fork()

Key idea: a pipe can facilitate parent-child communication because file
descriptors are duplicated on fork(). Thus, a pipe created prior to fork() will
also be accessible in the child!

But wait – isn’t the child a copy of the parent? So wouldn’t it get a copy of the
pipe, not share the same one?

No, as it turns out – the child also gets access to the same file descriptor
sessions open at the time fork is called (sort of - we’ll see how this is possible
later!)

26

pipe()

With this sharing, pipe can allow processes to communicate!

1. Create a pipe in the parent

2. Fork off a child process – important this comes second; only a pipe created
prior to the fork is accessible by the child! Otherwise, each has their own
separate pipe.

3. Parent and child can read/write with pipe (e.g. parent writes, child reads)

27

Plan For Today

• Recap: fork, waitpid, execvp and our first shell

• Shell Feature Demo: pipes

• pipe() system call

• Example: Parent-child pipe

• dup2() and rewiring file descriptors

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

28

Demo: Parent Child Pipe

Let’s write a program where the parent sends a predetermined message to the
child, which prints it out.

Note: can use a pipe in any way we’d like, e.g. child could write and parent could
read. Though usually pipes are used unidirectionally – e.g. if you want
bidirectional communication, we usually create 2 pipes.

29

Demo: Parent Child Pipe
static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) { // Child only reads from pipe (assume everything is read)
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }
 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

30

Parent Child Pipe Summary

• Both the parent and the child must close the pipe FDs when they are done
with them.

• If someone tries calling read from a pipe and no data has been written, it will
block until some data is available, or until the pipe write end is closed
everywhere (“end of file” for pipes).

31

How do we implement shell pipelines?

Three key questions:

1. What the heck is a “magic portal” and how do we create one?
The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork() (plus a new property of execvp we’ll see later)

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call

32

Plan For Today

• Recap: fork, waitpid, execvp and our first shell

• Shell Feature Demo: pipes

• pipe() system call

• Example: Parent-child pipe

• dup2() and rewiring file descriptors

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

33

Rewiring File Descriptors

The previous parent-child pipe program requires manually reading and writing
from new file descriptors created for the pipe.

Ultimate goal: invisibly connect pipe to STDOUT/STDIN without the programs
knowing.

We want anything the ”writer process” prints to the terminal to be
automatically written to the pipe. And want whatever the “reader process”
reads from its STDIN to actually be read from the pipe.

34

How do we implement shell pipelines?

To implement two-process pipelines, we must do the following:

1. Create a “magic portal” that allows data to be sent between two processes

2. Spawn 2 child processes (1 per command)

3. Connect one end of that portal to the first child’s STDOUT, and the other end
to the second child’s STDIN.

First child Second child

STDIN STDOUT STDERR STDIN STDOUT STDERR

Terminal “Magic portal” Portal image unmodified, CC credit

https://pixexid.com/image/a-mesmerizing-cgi-render-of-a-wormhole-bending-space-and-time-surrounded-by-bri-d2hga3nz

35

Redirecting Process I/O

dup2 copies over file descriptor information from one file descriptor number
(srcfd) to another (dstfd).

int dup2(int srcfd, int dstfd);

e.g. dup2(3, 1); // duplicates from 3 -> 1; FD 1 and 3 now refer to same thing

• Both will now refer to the same thing (e.g. if you read from one, it will advance
the position of the other).

• If dstfd is already open, it is closed before being used.

36

Dup2 Example

int fds[2];
pipe(fds);

...

printf("This prints to the terminal\n");

dup2(fds[1], STDOUT_FILENO);
printf("This is sent to the pipe!\n");

...

STDIN STDOUT STDERR Pipe read end Pipe write end

0 1 2 3 4

read write

37

Dup2 Example

int fds[2];
pipe(fds);

...

printf("This prints to the terminal\n");

dup2(fds[1], STDOUT_FILENO);
printf("This is sent to the pipe!\n");

...

STDIN STDOUT STDERR Pipe read end Pipe write end

0 1 2 3 4

read write

38

Dup2 Example

int fds[2];
pipe(fds);

...

printf("This prints to the terminal\n");

dup2(fds[1], STDOUT_FILENO);
printf("This is sent to the pipe!\n");

...

STDIN STDOUT STDERR Pipe read end Pipe write end

0 1 2 3 4

read write

39

Dup2 Example

int fds[2];
pipe(fds);

...

printf("This prints to the terminal\n");

dup2(fds[1], STDOUT_FILENO);
printf("This is sent to the pipe!\n");

...

STDIN STDOUT STDERR Pipe read end Pipe write end

0 1 2 3 4

read write

40

Dup2 Example

int fds[2];
pipe(fds);

...

printf("This prints to the terminal\n");

dup2(fds[1], STDOUT_FILENO);
printf("This is sent to the pipe!\n");

...

STDIN STDOUT STDERR Pipe read end Pipe write end

0 1 2 3 4

read write

41

Dup2 Example

int fds[2];
pipe(fds);

...

printf("This prints to the terminal\n");

dup2(fds[1], STDOUT_FILENO);
close(fds[1]);
printf("This is sent to the pipe!\n");

...

STDIN STDOUT STDERR Pipe read end

0 1 2 3 4

read write

42

Redirecting Process I/O

dup2 copies over file descriptor information from one file descriptor number
(srcfd) to another (dstfd).

int dup2(int srcfd, int dstfd);

Once we dup2, it’s common to close the original FD – we usually don’t need 2
both referring to the same thing.

Example: have STDOUT really write to a pipe – after dup2, close original pipe FD.

dup2(fds[1], STDOUT_FILENO);

close(fds[1]);

43

44

45

46

How do we implement shell pipelines?

To implement two-process pipelines, we must do the following:

1. Create a pipe prior to spawning the child processes

2. Spawn 2 child processes (1 per command)

3. Use dup2 to connect the first child’s STDOUT to the write end of the pipe.
Use dup2 again to connect the second child’s STDIN to the read end of the
pipe. First child Second child

STDIN STDOUT STDERR STDIN STDOUT STDERR

Terminal

Read Write

Pipe

47

A Secret About execvp

Problem: if we spawn a child and rewire its STDOUT to point to a pipe, won’t
everything get wiped anyway when we call execvp?

New insight: execvp consumes the process but leaves the file descriptor table
intact!

More next time…

48

Recap

• Recap: fork, waitpid, execvp and our first shell

• Shell Feature Demo: pipes

• pipe() system call

• Example: Parent-child pipe

• dup2() and rewiring file descriptors

Next time: more about rewiring STDIN/STDOUT,
plus the details of how pipes are shared on fork()

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

Lecture 10 takeaway:

Pipes are sets of file

descriptors that let us

read/write. We can

share pipes with child

processes to send

arbitrary data back and

forth.

	Slide 1: CS111, Lecture 10 Pipes
	Slide 2: CS111 Topic 2: Multiprocessing
	Slide 3: Learning Goals
	Slide 4: Plan For Today
	Slide 5: Plan For Today
	Slide 6: waitpid()
	Slide 7: execvp()
	Slide 8: execvp()
	Slide 9: Implementing a Shell
	Slide 10: First Shell Solution
	Slide 11: Terminating the Child Process
	Slide 12: Demo: first-shell-soln.cc
	Slide 13: Plan For Today
	Slide 14: Additional Shell Features
	Slide 15: Additional Shell Features
	Slide 16: Demo: shell pipelines
	Slide 17: How do we implement shell pipelines?
	Slide 18: How do we implement shell pipelines?
	Slide 19: How do we implement shell pipelines?
	Slide 20: How do we implement shell pipelines?
	Slide 21: Plan For Today
	Slide 22: “Magic Portal”: pipe() System Call
	Slide 23: pipe() Within 1 Process
	Slide 24: How do we implement shell pipelines?
	Slide 25: pipe() and fork()
	Slide 26: pipe()
	Slide 27: Plan For Today
	Slide 28: Demo: Parent Child Pipe
	Slide 29: Demo: Parent Child Pipe
	Slide 30: Parent Child Pipe Summary
	Slide 31: How do we implement shell pipelines?
	Slide 32: Plan For Today
	Slide 33: Rewiring File Descriptors
	Slide 34: How do we implement shell pipelines?
	Slide 35: Redirecting Process I/O
	Slide 36: Dup2 Example
	Slide 37: Dup2 Example
	Slide 38: Dup2 Example
	Slide 39: Dup2 Example
	Slide 40: Dup2 Example
	Slide 41: Dup2 Example
	Slide 42: Redirecting Process I/O
	Slide 43
	Slide 44
	Slide 45
	Slide 46: How do we implement shell pipelines?
	Slide 47: A Secret About execvp
	Slide 48: Recap

