
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under 
Creative Commons Attribution 2.5 License.  All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others. 
NOTICE RE UPLOADING TO WEBSITES:  This content is protected and may not be shared, 

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 11
Pipes, Continued



2

CS111 Topic 2: Multiprocessing

Multiprocessing 
Introduction

Managing 
processes and 
running other 

programs

Inter-process 
communication 

with pipes

Lecture 8 Lecture 9 Lecture 10 / Today

assign3: implement your own shell!

Key Question: How can our program create and interact with other programs? How 
does the operating system manage user programs?  



3

Learning Goals

• Implement an example of inter-process communication using pipe and dup2 

• Explore why a pipe is shared when we call fork()



4

Plan For Today

• Recap: Pipes and dup2 so far

• Practice: implementing subprocess

• I/O Redirection with files

• Closing pipes

• Why are pipes shared when we call fork?

cp -r /afs/ir/class/cs111/lecture-code/lect11 .



5

Plan For Today

• Recap: Pipes and dup2 so far

• Practice: implementing subprocess

• I/O Redirection with files

• Closing pipes

• Why are pipes shared when we call fork?

cp -r /afs/ir/class/cs111/lecture-code/lect11 .



6

How do we implement shell pipelines?

To implement two-process pipelines, we must do the following:

1. Create a “magic portal” that allows data to be sent between two processes

2. Spawn 2 child processes (1 per command)

3. Connect one end of that portal to the first child’s STDOUT, and the other end 
to the second child’s STDIN

First child Second child

STDIN STDOUT STDERR STDIN STDOUT STDERR

Terminal “Magic portal” Portal image unmodified, CC credit

https://pixexid.com/image/a-mesmerizing-cgi-render-of-a-wormhole-bending-space-and-time-surrounded-by-bri-d2hga3nz


7

How do we implement shell pipelines?

Three key questions:

1. What the heck is a “magic portal” and how do we create one?
The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork(), plus a new property of execvp

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call



8

How do we implement shell pipelines?

Three key questions:

1. What the heck is a “magic portal” and how do we create one?
The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork(), plus a new property of execvp

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call



9

“Magic Portal”: pipe() System Call

int pipe(int fds[]);

The pipe system call populates the 2-element array fds with two file descriptors, 
where everything written to fds[1] can be read from fds[0]. (“you learn to read 
before you learn to write” (read = fds[0], write = fds[1])).

• Returns 0 on success, or -1 on error.

Imagine: like opening the same file twice, once for reading and once for writing



10

How do we implement shell pipelines?

Three key questions:

1. What the heck is a “magic portal” and how do we create one?
The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork(), plus a new property of execvp

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call



11

pipe() and fork()

Key idea: a pipe can facilitate parent-child communication because file 
descriptors are duplicated on fork().  Thus, a pipe created prior to fork() will 
also be accessible in the child!

We might expect the child gets a copy of the pipe – however, as we’ll see today, 
the child gets access to the same file descriptor sessions at the time fork is 
called (sort of).



12

Demo: Parent Child Pipe
static const char * kPipeMessage = "Hello, this message is coming through a pipe."; 
int main(int argc, char *argv[]) { 
    int fds[2]; 
    pipe(fds); 
    size_t bytesSent = strlen(kPipeMessage) + 1; 
    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { // Child only reads from pipe (assume everything is read)     
        close(fds[1]);
        char buffer[bytesSent]; 
        read(fds[0], buffer, sizeof(buffer)); 
        close(fds[0]); 
        printf("Message from parent: %s\n", buffer); 
        return 0; 
    } 
    // In the parent, we only write to the pipe (assume everything is written)     
    close(fds[0]); 
    write(fds[1], kPipeMessage, bytesSent); 
    close(fds[1]); 
    waitpid(pidOrZero, NULL, 0); 
    return 0; 
}

Both the parent and the child 
must close the pipe FDs when 
they are done with them.



13

How do we implement shell pipelines?

Three key questions:

1. What the heck is a “magic portal” and how do we create one?
The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork(), plus a new property of execvp

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call



14

Redirecting Process I/O

dup2 copies over file descriptor information from one file descriptor number 
(srcfd) to another (dstfd).  Both now refer to same thing (e.g. reading from one 
advances read position of the other).

int dup2(int srcfd, int dstfd);

e.g. dup2(3, 1);  // duplicates from 3 -> 1; FD 1 and 3 now refer to same thing

Example: have STDOUT really write to a pipe – after dup2, close original pipe FD.

dup2(fds[1], STDOUT_FILENO);

close(fds[1]);

If we change file descriptors 0-2, we can redirect STDIN/STDOUT/STDERR to be 
something else without the program knowing!



15

A Secret About execvp

Problem: if we spawn a child and rewire its STDOUT to point to a pipe, won’t 
everything get wiped anyway when we call execvp?  

New insight: execvp consumes the process but leaves the file descriptor table 
intact!



16

How do we implement shell pipelines?

To implement two-process pipelines, we must do the following:

1. Create a pipe prior to spawning the child processes

2. Spawn 2 child processes (1 per command)

3. Use dup2 to connect the first child’s STDOUT to the write end of the pipe.  
Use dup2 again to connect the second child’s STDIN to the read end of the 
pipe. First child Second child

STDIN STDOUT STDERR STDIN STDOUT STDERR

Terminal

Read   Write

Pipe



17

Plan For Today

• Recap: Pipes and dup2 so far

• Practice: implementing subprocess

• I/O Redirection with files

• Closing pipes

• Why are pipes shared when we call fork?

cp -r /afs/ir/class/cs111/lecture-code/lect11 .



18

Practice: Subprocess

Let’s implement the subprocess function, which spawns a child and connects a 
pipe such that the parent can write to the child’s STDIN.  (Slightly different from 
pipeline end-goal, where 2+ children are connected via pipes).

This is useful because we can spawn and run any other program, even if we 
don’t have the source code for it, and feed it input.

Parent Child

STDIN STDOUT STDERR 3 STDIN STDOUT STDERR

Terminal

Read   Write

Pipe



19

subprocess

Let’s implement the subprocess function, which spawns a child and connects a 
pipe such that the parent can write to the child’s STDIN.

subprocess_t subprocess(char *command);

subprocess spawns a child to run the specified command and returns its PID as 
well as a file descriptor we can write to to write to its STDIN.

It returns a struct containing:

• the PID of the child process

• a file descriptor we can use to write to the child's STDIN

subprocess-soln.cc



20

subprocess

int main(int argc, char *argv[]) { 
 // Spawn a child that is running the grep command 
 subprocess_t sp = subprocess("/usr/bin/grep Sunny"); 
 
 // We want to feed these lines as input to grep to print only sunny days
 const char * recent_weather[] = { "Sunny 72", "Rainy 55", "Cloudy 62",
         "Sunny 80", "Sunny 75", "Cloudy 61", "Sunny 68", "Rainy 60", "Sunny 85"
      }; 
      size_t nelems = sizeof(recent_weather) / sizeof(recent_weather[0]);

 // write each entry on its own line to the STDIN of the child process 
      for (size_t i = 0; i < nelems; i++) {
  dprintf(sp.supplyfd, "%s\n", recent_weather[i]); 
      } 

 // Close the write FD to indicate the input is closed, and wait for child
 close(sp.supplyfd); 
 waitpid(sp.pid, NULL, 0); 
 return 0; 
}

typedef struct subprocess_t {
    pid_t pid;
    int supplyfd;
} subprocess_t;



21

Demo: subprocess



22

subprocess

Implementing subprocess:

1. Create a pipe

2. Spawn a child process

3. That child process changes its STDIN to be the pipe read end

4. That child process calls execvp to run the specified command

5. We return the pipe write end to the caller along with the child’s PID.  That 
caller can write to the file descriptor, which appears to the child as its STDIN



23

subprocess

subprocess_t subprocess(const char *command) { 
    // this line parses the command into a pipeline like is done for you on assign3 
    pipeline p(command); 
    
    // Make a pipe 
    int fds[2]; 
    pipe(fds); 

    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { 
        // We are not writing to the pipe, only reading from it 
        close(fds[1]); 

        // Duplicate the read end of the pipe into STDIN 
        dup2(fds[0], STDIN_FILENO); 
        close(fds[0]); 
        
        // Run the command 
        execvp(p.commands[0].argv[0], p.commands[0].argv); 
        exit(1);
    } 
    ...

Wait – there’s no read 
call here!  Where do we 
read from the pipe?  Key 
idea: the execvp’ed 
program will read from 
the pipe when it reads 
from its STDIN!



24

subprocess

subprocess_t subprocess(const char *command) { 
    ...
    close(fds[0]);
    
    // Package up PID and pipe write end to return together in a struct
    subprocess_t returnStruct;
    returnStruct.pid = pidOrZero;
    returnStruct.supplyfd = fds[1];
    return returnStruct;
}

typedef struct subprocess_t {
    pid_t pid;
    int supplyfd;
} subprocess_t;

Wait – why don’t we call waitpid here?   Key idea: the caller will be 
sending data to the child, so child needs to keep running after 
subprocess finishes.  It’s caller’s responsibility to waitpid for the child.



25

subprocess

int main(int argc, char *argv[]) { 
 // Spawn a child that is running the grep command 
 subprocess_t sp = subprocess("/usr/bin/grep Sunny"); 
 
 // We want to feed these lines as input to grep to print only sunny days
 const char * recent_weather[] = { "Sunny 72", "Rainy 55", "Cloudy 62",
         "Sunny 80", "Sunny 75", "Cloudy 61", "Sunny 68", "Rainy 60", "Sunny 85"
      }; 
      size_t nelems = sizeof(recent_weather) / sizeof(recent_weather[0]);

 // write each entry on its own line to the STDIN of the child process 
      for (size_t i = 0; i < nelems; i++) {
  dprintf(sp.supplyfd, "%s\n", recent_weather[i]); 
      } 

 // Close the write FD to indicate the input is closed, and wait for child
 close(sp.supplyfd); 
 waitpid(sp.pid, NULL, 0); 
 return 0; 
}

typedef struct subprocess_t {
    pid_t pid;
    int supplyfd;
} subprocess_t;



26

Plan For Today

• Recap: Pipes and dup2 so far

• Practice: implementing subprocess

• I/O Redirection with files

• Closing pipes

• Why are pipes shared when we call fork?

cp -r /afs/ir/class/cs111/lecture-code/lect11 .



27

Redirecting Process I/O to/from a File

There is one final shell feature we can use our understanding of file descriptors 
to implement, I/O Redirection with a file:

This saves the output to a file instead of printing it to the terminal

sort file.txt > output.txt

This reads input from a file instead of reading from the terminal

sort < input.txt

Consider how we can use our knowledge of file descriptors to implement this 
functionality on assign3!



28

Redirecting Process I/O to/from a File

Example: sort < input.txt

Child

STDIN STDOUT STDERR

Terminalinput.txt



29

assign3

Implement your own shell! (“stsh” – Stanford Shell)

4 key features:

• Run a single command and wait for it to finish

• Run 2 commands connected via a pipe

• Run an arbitrary number of commands connected via pipes

• Have command input come from a file, or save command output to a file

You’re encouraged to unify code across milestones where possible!



30

Plan For Today

• Recap: Pipes and dup2 so far

• Practice: implementing subprocess

• I/O Redirection with files

• Closing pipes

• Why are pipes shared when we call fork?

cp -r /afs/ir/class/cs111/lecture-code/lect11 .



31

Pipe Stalling

Not closing write ends of pipes can cause functionality issues.  If a process calls 
read and there’s nothing more to read, but the write end is still open, it will 
block until it gets more input!

- E.g. if the child reads from a pipe, but the parent waits for the child to finish 
before writing anything, the child will stall

- E.g. if the child reads until there’s nothing left, but the write end was not 
closed everywhere, it will stall.



32

Parent Child Pipe

static const char * kPipeMessage = "Hello, this message is coming through a pipe."; 
int main(int argc, char *argv[]) { 
    int fds[2]; 
    pipe(fds); 
    size_t bytesSent = strlen(kPipeMessage) + 1; 
    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
        close(fds[1]);
        char buffer[bytesSent]; 
        read(fds[0], buffer, sizeof(buffer)); 
        close(fds[0]); 
        printf("Message from parent: %s\n", buffer); 
        return 0; 
    } 
    // In the parent, we only write to the pipe (assume everything is written)     
    close(fds[0]); 
    write(fds[1], kPipeMessage, bytesSent); 
    close(fds[1]); 
    waitpid(pidOrZero, NULL, 0); 
    return 0; 
}



33

Parent Doesn’t Send Message  (still 
finishes)

static const char * kPipeMessage = "Hello, this message is coming through a pipe."; 
int main(int argc, char *argv[]) { 
    int fds[2]; 
    pipe(fds); 
    size_t bytesSent = strlen(kPipeMessage) + 1; 
    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
        close(fds[1]);
        char buffer[bytesSent]; 
        read(fds[0], buffer, sizeof(buffer)); 
        close(fds[0]); 
        printf("Message from parent: %s\n", buffer); 
        return 0; 
    } 
    // In the parent, we only write to the pipe (assume everything is written)     
    close(fds[0]); 
    write(fds[1], kPipeMessage, bytesSent); // program will still terminate
    close(fds[1]); 
    waitpid(pidOrZero, NULL, 0); 
    return 0; 
}



34

Ex: Child reads, parent doesn’t write or 
close

static const char * kPipeMessage = "Hello, this message is coming through a pipe."; 
int main(int argc, char *argv[]) { 
    int fds[2]; 
    pipe(fds); 
    size_t bytesSent = strlen(kPipeMessage) + 1; 
    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
        close(fds[1]);
        char buffer[bytesSent]; 
        read(fds[0], buffer, sizeof(buffer)); 
        close(fds[0]); 
        printf("Message from parent: %s\n", buffer); 
        return 0; 
    } 
    // In the parent, we only write to the pipe (assume everything is written)     
    close(fds[0]); 
    write(fds[1], kPipeMessage, bytesSent); 
    close(fds[1]); 
    waitpid(pidOrZero, NULL, 0); 
    return 0; 
}

child stuck here!



35

Ex: Child reads, parent writes after waitpid

static const char * kPipeMessage = "Hello, this message is coming through a pipe."; 
int main(int argc, char *argv[]) { 
    int fds[2]; 
    pipe(fds); 
    size_t bytesSent = strlen(kPipeMessage) + 1; 
    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
        close(fds[1]);
        char buffer[bytesSent]; 
        read(fds[0], buffer, sizeof(buffer)); 
        close(fds[0]); 
        printf("Message from parent: %s\n", buffer); 
        return 0; 
    } 
    // In the parent, we only write to the pipe (assume everything is written)     
    close(fds[0]); 
    waitpid(pidOrZero, NULL, 0); 
    write(fds[1], kPipeMessage, bytesSent); 
    close(fds[1]); 
    return 0; 
}

child stuck here!



36

Ex: Child reads continually, parent 
doesn’t close

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) { 
    int fds[2]; 
    pipe(fds); 
    size_t bytesSent = strlen(kPipeMessage) + 1; 
    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
        close(fds[1]); 
        char buffer[bytesSent]; 
        while (true) { 
            ssize_t ret = read(fds[0], buffer, sizeof(buffer)); 
            if (ret == 0) break; 
            printf("Message from parent: %s\n", buffer); 
        } 
        close(fds[0]); 
        return 0; 
    } 
    // In the parent, we only write to the pipe (assume everything is written) 
    close(fds[0]); 
    write(fds[1], kPipeMessage, bytesSent); 
    waitpid(pidOrZero, NULL, 0); 
    close(fds[1]); 
    return 0; 
}

child stuck here!



37

Ex: Child reads continually, forgets to 
close write end itself

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) { 
    int fds[2]; 
    pipe(fds); 
    size_t bytesSent = strlen(kPipeMessage) + 1; 
    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
        close(fds[1]); 
        char buffer[bytesSent]; 
        while (true) { 
            ssize_t ret = read(fds[0], buffer, sizeof(buffer)); 
            if (ret == 0) break; 
            printf("Message from parent: %s\n", buffer); 
        } 
        close(fds[0]); 
        return 0; 
    } 
    // In the parent, we only write to the pipe (assume everything is written) 
    close(fds[0]); 
    write(fds[1], kPipeMessage, bytesSent); 
    close(fds[1]);
    waitpid(pidOrZero, NULL, 0);  
    return 0; 
}

child stuck here!



38

Plan For Today

• Recap: Pipes and dup2 so far

• Practice: implementing subprocess

• I/O Redirection with files

• Closing pipes

• Why are pipes shared when we call fork?

cp -r /afs/ir/class/cs111/lecture-code/lect11 .



39

File Descriptor Table

The OS maintains a “Process Control Block” for each process containing info 
about it.  This includes a process’s file descriptor table, an array of info about 
open files/resources for this process.  

Key idea: a file descriptor is an index into that process’s file descriptor table!

Process Control Block

0 1 2 3 4 …



40

File Descriptor Table

Key idea: a file descriptor is an index into that process’s file descriptor table.

• An entry in a file descriptor table is really a pointer to an entry in another global 
table, the open file table.

• The open file table is one array of information about open files/resources 
across all processes.  There’s one open file table entry per session (not per file).

0 1 2 3 … …

Process A control block

0 1 2 3 … …

Process B control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
…(file.txt)

mode: w
refcount: 1
Cursor:
…(file.txt)

…Open file table



41

File Descriptor Table

An open file table entry contains various information, such as:

• mode: e.g., read, write, read+write

• Reference count: the number of file descriptor table entries pointing to it

• Cursor: tracking where in the file it currently is

0 1 2 3 … …

Process A control block

0 1 2 3 … …

Process B control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
…(file.txt)

mode: w
refcount: 1
Cursor:
…(file.txt)

…Open file table



42

Open File Table

Calling open creates a new open file table entry, and a new file descriptor index 
points to it. 

int fd = open("file.txt", O_RDONLY); // 3

0 1 2 3 … …

Process A control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
…(file.txt)

…Open file table



43

Open File Table

Calling pipe creates 2 new open file table entries, and 2 new file descriptor 
indexes point to them.  The open file table entries are linked behind the scenes.

int fds[2];

pipe(fds); // afterwards, fds[0] = 3, fds[1] = 4

0 1 2 3 4 …

Process A control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
...(pipe read end)

mode: w
refcount: 1
Cursor:
…(pipe write end)

…Open file table



44

Open File Table

Calling fork means the OS creates a new Process Control Block with a copy of 
parent’s FD table; so, all file descriptor indexes point to the same place!

int fds[2];

pipe(fds); // afterwards, fds[0] = 3, fds[1] = 4

pid_t pidOrZero = fork();

0 1 2 3 4 …

Parent process control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
...(pipe read end)

mode: w
refcount: 1
Cursor:
…(pipe write end)

…Open file table



45

0 1 2 3 4 …

Child process control block

Open File Table

Calling fork means the OS creates a new Process Control Block with a copy of 
parent’s FD table; so, all file descriptor indexes point to the same place!

int fds[2];

pipe(fds); // afterwards, fds[0] = 3, fds[1] = 4

pid_t pidOrZero = fork();

0 1 2 3 4 …

Parent process control block

mode: r
refcount: 2
Cursor:
…(terminal in)

mode: w
refcount: 2
Cursor:
…(terminal out)

mode: w
refcount: 2
Cursor:
..(terminal error)

mode: r
refcount: 2
Cursor:
...(pipe read end)

mode: w
refcount: 2
Cursor:
…(pipe write end)

…Open file table



46

Key Idea: on fork, the child process 
gets “shallow copies” of all parent file 
descriptors.  This is how a parent and 
child can share the same pipe even 

though it’s “copied” on fork.



47

Reference Count

• When we call close, that makes the file descriptor index no longer point to an 
open file table entry, and that open file table entry’s ref count is decremented.

• When open file table entry’s ref count is 0, it’s deleted



48

Key Idea: parent-child duplicated file 
descriptors must be closed in both the 
parent and child because both parent 

and child are referencing them.



49

Practice: Reference Count

a) If a process opens a file, and then spawns a child process, what will the 
reference count be for the corresponding open file table entry(ies)?  

b) What about if a process spawns a child process and then opens a file?

Respond on PollEv: 

pollev.com/cs111



50



51

Practice: Reference Count

If a process opens a file, and then spawns a child process, what will the 
reference count be for the corresponding open file table entry(ies)?  

int fd = open("file.txt", O_RDONLY); // fd = 3 here

pid_t pidOrZero = fork();

0 1 2 3 … …

Parent process control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

… …Open file table



52

Practice: Reference Count

If a process opens a file, and then spawns a child process, what will the 
reference count be for the corresponding open file table entry(ies)?  

int fd = open("file.txt", O_RDONLY); // fd = 3 here

pid_t pidOrZero = fork();

0 1 2 3 … …

Parent process control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
...(file.txt)

…Open file table



53

Practice: Reference Count

If a process opens a file, and then spawns a child process, what will the 
reference count be for the corresponding open file table entry(ies)?  

int fd = open("file.txt", O_RDONLY); // fd = 3 here

pid_t pidOrZero = fork();

0 1 2 3 … …

Child process control block

0 1 2 3 … …

Parent process control block

mode: r
refcount: 2
Cursor:
…(terminal in)

mode: w
refcount: 2
Cursor:
…(terminal out)

mode: w
refcount: 2
Cursor:
..(terminal error)

mode: r
refcount: 2
Cursor:
...(file.txt)

…Open file table



54

Practice: Reference Count

If a process spawns a child process, and then opens a file, what will the 
reference count be for the corresponding open file table entry(ies)?  

pid_t pidOrZero = fork();

int fd = open("file.txt", O_RDONLY); // fd = 3 here

0 1 2 … … …

Parent process control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

… … …Open file table



55

Practice: Reference Count

If a process spawns a child process, and then opens a file, what will the 
reference count be for the corresponding open file table entry(ies)?  

pid_t pidOrZero = fork();

int fd = open("file.txt", O_RDONLY); // fd = 3 here

0 1 2 … … …

Parent process control block

mode: r
refcount: 2
Cursor:
…(terminal in)

mode: w
refcount: 2
Cursor:
…(terminal out)

mode: w
refcount: 2
Cursor:
..(terminal error)

… … …Open file table

0 1 2 … … …

Child process control block



56

Practice: Reference Count

If a process spawns a child process, and then opens a file, what will the 
reference count be for the corresponding open file table entry(ies)?  

pid_t pidOrZero = fork();

int fd = open("file.txt", O_RDONLY); // fd = 3 here

0 1 2 3 … …

Child process control block

0 1 2 3 … …

Parent process control block

mode: r
refcount: 2
Cursor:
…(terminal in)

mode: w
refcount: 2
Cursor:
…(terminal out)

mode: w
refcount: 2
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
...(file.txt)

mode: r
refcount: 1
Cursor:
…(file.txt)

…Open file table



57

Practice: Reference Count

a) If a process opens a file, and then spawns a child process, what will the 
reference count be for the corresponding open file table entry(ies)?   2.

b) What about if a process spawns a child process and then opens a file? 1.

(a) explains why we must close this file in both the parent and child.
int fd = open(…);
pid_t pidOrZero = fork();
if (pidOrZero == 0) {
 …
 close(fd);
} else {
 …
 close(fd);
}



58

Practice: Reference Count

a) If a process opens a file, and then spawns a child process, what will the 
reference count be for the corresponding open file table entry(ies)?   2.

b) What about if a process spawns a child process and then opens a file? 1.

Both together explain why, to share a pipe, we must create it prior to fork().

pid_t pidOrZero = fork();

int fds[2];

pipe(fds);  // uh oh - parent and child have separate pipes!



59

dup2 and Open File Table

0 1 2 3 4 …

Parent process control block

mode: r
refcount: X
(terminal in)

mode: w
refcount: X
(terminal out)

mode: w
refcount: X
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

int fds[2];

pipe(fds); // assume fds[0] is 3 and fds[1] is 4

dup2(fds[0], STDIN_FILENO); 

close(fds[0]);



60

dup2 and Open File Table

0 1 2 3 4 …

Parent process control block

mode: r
refcount: X
(terminal in)

mode: w
refcount: X
(terminal out)

mode: w
refcount: X
(terminal error)

mode: r
refcount: 2
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

int fds[2];

pipe(fds); // assume fds[0] is 3 and fds[1] is 4

dup2(fds[0], STDIN_FILENO); 

close(fds[0]);



61

dup2 and Open File Table

0 1 2 3 4 …

Parent process control block

mode: r
refcount: X
(terminal in)

mode: w
refcount: X
(terminal out)

mode: w
refcount: X
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

int fds[2];

pipe(fds); // assume fds[0] is 3 and fds[1] is 4

dup2(fds[0], STDIN_FILENO); 

close(fds[0]);



62

Summary: File Desciptors / Open File 
Table

• Per-process file descriptor table + global open file table.  Entries in file 
descriptor tables point to entries in the open file table.

• One open file table entry for each session (e.g. every open call), with refcount.

• If a pipe is created and then we call fork, the child accesses the same pipe 
because its file descriptor table is copied, which does not contain the actual 
pipe data; that is stored in the global “open file table” which is not duplicated 
on fork.



63

Recap

• Recap: Pipes and dup2 so far

• Practice: implementing subprocess

• I/O Redirection with files

• Closing pipes

• Why are pipes shared when we call 
fork?

Next time: introduction to 
multithreading

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

Lecture 11 takeaway: We can 

share pipes with child 

processes and change FDs 0-2 

to connect processes and 

redirect their I/O.  File 

descriptors are shared on fork 

because the file descriptor 

table, which is copied, contains 

pointers to a shared open file 

table, which is not copied.



64

Extra Slides



65

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

mode: r
refcount: 1
(terminal in)

mode: w
refcount: 1
(terminal out)

mode: w
refcount: 1
(terminal error)

… … …Open file table

static const char * kPipeMessage = "Hello, this message is coming through a pipe."; 
int main(int argc, char *argv[]) { 
    int fds[2]; 
    pipe(fds); 
    size_t bytesSent = strlen(kPipeMessage) + 1; 
    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
    ...
}



66

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

mode: r
refcount: 1
(terminal in)

mode: w
refcount: 1
(terminal out)

mode: w
refcount: 1
(terminal error)

… … …Open file table

static const char * kPipeMessage = "Hello, this message is coming through a pipe."; 
int main(int argc, char *argv[]) { 
    int fds[2]; 
    pipe(fds); 
    size_t bytesSent = strlen(kPipeMessage) + 1; 
    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
    ...
}



67

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

mode: r
refcount: 1
(terminal in)

mode: w
refcount: 1
(terminal out)

mode: w
refcount: 1
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

static const char * kPipeMessage = "Hello, this message is coming through a pipe."; 
int main(int argc, char *argv[]) { 
    int fds[2]; 
    pipe(fds);  // here, fds[0] = 3, fds[1] = 4 
    size_t bytesSent = strlen(kPipeMessage) + 1; 
    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
    ...
}



68

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

mode: r
refcount: 1
(terminal in)

mode: w
refcount: 1
(terminal out)

mode: w
refcount: 1
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

static const char * kPipeMessage = "Hello, this message is coming through a pipe."; 
int main(int argc, char *argv[]) { 
    int fds[2]; 
    pipe(fds);  // here, fds[0] = 3, fds[1] = 4 
    size_t bytesSent = strlen(kPipeMessage) + 1; 
    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
    ...
}



69

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 2
(pipe read end)

mode: w
refcount: 2
(pipe write end)

…Open file table

static const char * kPipeMessage = "Hello, this message is coming through a pipe."; 
int main(int argc, char *argv[]) { 
    int fds[2]; 
    pipe(fds);  // here, fds[0] = 3, fds[1] = 4 
    size_t bytesSent = strlen(kPipeMessage) + 1; 
    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
    ...
}



70

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 2
(pipe read end)

mode: w
refcount: 2
(pipe write end)

…Open file table

static const char * kPipeMessage = "Hello, this message is coming through a pipe."; 
int main(int argc, char *argv[]) { 
    int fds[2]; 
    pipe(fds);  // here, fds[0] = 3, fds[1] = 4 
    size_t bytesSent = strlen(kPipeMessage) + 1; 
    pid_t pidOrZero = fork(); 
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
    ...
}



71

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 2
(pipe read end)

mode: w
refcount: 2
(pipe write end)

…Open file table

...
    // In the parent, we only write to the pipe (assume everything is written)     
    close(fds[0]); 
    write(fds[1], kPipeMessage, bytesSent); 
    close(fds[1]); 
    waitpid(pidOrZero, NULL, 0); 
    return 0; 
}



72

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 2
(pipe write end)

…Open file table

...
    // In the parent, we only write to the pipe (assume everything is written)     
    close(fds[0]); 
    write(fds[1], kPipeMessage, bytesSent); 
    close(fds[1]); 
    waitpid(pidOrZero, NULL, 0); 
    return 0; 
}



73

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 2
(pipe write end)

…Open file table

...
    // In the parent, we only write to the pipe (assume everything is written)     
    close(fds[0]); 
    write(fds[1], kPipeMessage, bytesSent); 
    close(fds[1]); 
    waitpid(pidOrZero, NULL, 0); 
    return 0; 
}



74

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 2
(pipe write end)

…Open file table

...
    // In the parent, we only write to the pipe (assume everything is written)     
    close(fds[0]); 
    write(fds[1], kPipeMessage, bytesSent); 
    close(fds[1]); 
    waitpid(pidOrZero, NULL, 0); 
    return 0; 
}



75

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

...
    // In the parent, we only write to the pipe (assume everything is written)     
    close(fds[0]); 
    write(fds[1], kPipeMessage, bytesSent); 
    close(fds[1]); 
    waitpid(pidOrZero, NULL, 0); 
    return 0; 
}



76

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

...
    // In the parent, we only write to the pipe (assume everything is written)     
    close(fds[0]); 
    write(fds[1], kPipeMessage, bytesSent); 
    close(fds[1]); 
    waitpid(pidOrZero, NULL, 0); 
    return 0; 
}



77

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

...
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
        close(fds[1]);
        char buffer[bytesSent]; 
        read(fds[0], buffer, sizeof(buffer)); 
        close(fds[0]); 
        printf("Message from parent: %s\n", buffer); 
        return 0; 
    }  ...



78

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

… …Open file table

...
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
        close(fds[1]);
        char buffer[bytesSent]; 
        read(fds[0], buffer, sizeof(buffer)); 
        close(fds[0]); 
        printf("Message from parent: %s\n", buffer); 
        return 0; 
    }  ...



79

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

… …Open file table

...
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
        close(fds[1]);
        char buffer[bytesSent]; 
        read(fds[0], buffer, sizeof(buffer)); 
        close(fds[0]); 
        printf("Message from parent: %s\n", buffer); 
        return 0; 
    }  ...



80

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

… …Open file table

...
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
        close(fds[1]);
        char buffer[bytesSent]; 
        read(fds[0], buffer, sizeof(buffer)); 
        close(fds[0]); 
        printf("Message from parent: %s\n", buffer); 
        return 0; 
    }  ...



81

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

… … …Open file table

...
    if (pidOrZero == 0) { // In the child, we only read from the pipe 
        close(fds[1]);
        char buffer[bytesSent]; 
        read(fds[0], buffer, sizeof(buffer)); 
        close(fds[0]); 
        printf("Message from parent: %s\n", buffer); 
        return 0; 
    }  ...



82

Demo: Parent Child Pipe
- CPlayground

https://cplayground.com/?p=hare-camel-buffalo&breakpoints=%5B11%5D 

https://cplayground.com/?p=hare-camel-buffalo&breakpoints=%5B11%5D

	Slide 1: CS111, Lecture 11 Pipes, Continued
	Slide 2: CS111 Topic 2: Multiprocessing
	Slide 3: Learning Goals
	Slide 4: Plan For Today
	Slide 5: Plan For Today
	Slide 6: How do we implement shell pipelines?
	Slide 7: How do we implement shell pipelines?
	Slide 8: How do we implement shell pipelines?
	Slide 9: “Magic Portal”: pipe() System Call
	Slide 10: How do we implement shell pipelines?
	Slide 11: pipe() and fork()
	Slide 12: Demo: Parent Child Pipe
	Slide 13: How do we implement shell pipelines?
	Slide 14: Redirecting Process I/O
	Slide 15: A Secret About execvp
	Slide 16: How do we implement shell pipelines?
	Slide 17: Plan For Today
	Slide 18: Practice: Subprocess
	Slide 19: subprocess
	Slide 20: subprocess
	Slide 21: Demo: subprocess
	Slide 22: subprocess
	Slide 23: subprocess
	Slide 24: subprocess
	Slide 25: subprocess
	Slide 26: Plan For Today
	Slide 27: Redirecting Process I/O to/from a File
	Slide 28: Redirecting Process I/O to/from a File
	Slide 29: assign3
	Slide 30: Plan For Today
	Slide 31: Pipe Stalling
	Slide 32: Parent Child Pipe
	Slide 33: Parent Doesn’t Send Message  (still finishes)
	Slide 34: Ex: Child reads, parent doesn’t write or close
	Slide 35: Ex: Child reads, parent writes after waitpid
	Slide 36: Ex: Child reads continually, parent doesn’t close
	Slide 37: Ex: Child reads continually, forgets to close write end itself
	Slide 38: Plan For Today
	Slide 39: File Descriptor Table
	Slide 40: File Descriptor Table
	Slide 41: File Descriptor Table
	Slide 42: Open File Table
	Slide 43: Open File Table
	Slide 44: Open File Table
	Slide 45: Open File Table
	Slide 46: Key Idea: on fork, the child process gets “shallow copies” of all parent file descriptors.  This is how a parent and child can share the same pipe even though it’s “copied” on fork.
	Slide 47: Reference Count
	Slide 48: Key Idea: parent-child duplicated file descriptors must be closed in both the parent and child because both parent and child are referencing them.
	Slide 49: Practice: Reference Count
	Slide 50
	Slide 51: Practice: Reference Count
	Slide 52: Practice: Reference Count
	Slide 53: Practice: Reference Count
	Slide 54: Practice: Reference Count
	Slide 55: Practice: Reference Count
	Slide 56: Practice: Reference Count
	Slide 57: Practice: Reference Count
	Slide 58: Practice: Reference Count
	Slide 59: dup2 and Open File Table
	Slide 60: dup2 and Open File Table
	Slide 61: dup2 and Open File Table
	Slide 62: Summary: File Desciptors / Open File Table
	Slide 63: Recap
	Slide 64: Extra Slides
	Slide 65: Demo: Parent Child Pipe
	Slide 66: Demo: Parent Child Pipe
	Slide 67: Demo: Parent Child Pipe
	Slide 68: Demo: Parent Child Pipe
	Slide 69: Demo: Parent Child Pipe
	Slide 70: Demo: Parent Child Pipe
	Slide 71: Demo: Parent Child Pipe
	Slide 72: Demo: Parent Child Pipe
	Slide 73: Demo: Parent Child Pipe
	Slide 74: Demo: Parent Child Pipe
	Slide 75: Demo: Parent Child Pipe
	Slide 76: Demo: Parent Child Pipe
	Slide 77: Demo: Parent Child Pipe
	Slide 78: Demo: Parent Child Pipe
	Slide 79: Demo: Parent Child Pipe
	Slide 80: Demo: Parent Child Pipe
	Slide 81: Demo: Parent Child Pipe
	Slide 82: Demo: Parent Child Pipe - CPlayground

