CS111, Lecture 13

Race Conditions and Locks

Optional reading:

Operating Systems: Principles and Practice (2"9 Edition): Sections 5.2-5.4
and Section 6.5

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared,
uploaded, or distributed. (without expressed written permission)



CS111 Topic 3: Multithreading, Part 1

Topic 3: Multithreading - How can we have concurrency within a single
process? How does the operating system support this?

Race Locks and
conditions and

locks

Multithreading Multithreading

Condition
Variables

Introduction Patterns

Last lecture This Lecture Lecture 14 Lecture 15

assign4: implement several multithreaded programs while eliminating race conditions!



Learning Goals

* Understand how to identify critical sections and fix race conditions/deadlock
e Learn how locks can help us limit access to shared resources



Plan For Today

* Recap: Threads

e Critical Sections

* Mutexes

* Deadlock

* Dining Philosophers

cp -r /afs/ir/class/csl1l1l/lecture-code/lectl13 . 4




* Recap: Threads

Plan For Today

cp -r /afs/ir/class/csl1l1l/lecture-code/lectl13 .




From Processes to Threads

We can have concurrency within a single process using threads: independent
execution sequences within a single process.

* Threads let us run multiple functions in our program concurrently (e.g.
parallelize computation)

* Each thread operates within the same process, so they share a virtual address
space (!) (globals, heap, pass by reference, etc.)



C++ Thread

A thread object can be spawned to run the specified function with the given
arguments.

thread myThread(myFunc, argl, arg2, ...);

* myFunc: the function the thread should execute asynchronously

 args: a list of arguments (any length, or none) to pass to the function

* myFunc’s function's return value is ignored (use pass by reference instead)
* Once initialized with this constructor, the thread may execute at any time!



C++ Thread

To wait on a thread to finish, use the .join() method:

thread myThread(myFunc, argl, arg2);
// Wait for thread to finish (blocks)
myThread. join();

For multiple threads, we must wait on a specific thread one at a time:

thread friends[5];

for (int i =0; 1 < 5; i++) {
friends[i].join();

} s



Race Conditions

* Like with processes, threads can execute in unpredictable orderings.

* A race condition is an unpredictable ordering of events where some orderings
may cause undesired behavior.

* An example where race conditions can occur is
with operator<<. e.g. cout statements could get interleaved!

* To avoid this, use oslock and osunlock (custom CS111 functions - #include
"ostreamlock.h") around streams. They ensure at most one thread has
permission to write into a stream at any one time.

cout << oslock << "Hello, world!" << endl << osunlock;



Parallelizing Tasks

Simulation: let each thread help sell the 250 tickets until none are left.

const size_t kNumTicketAgents = 10;

int main(int argc, const char *argv[]) {
thread ticketAgents[kNumTicketAgents];
size_t remainingTickets = 250;

for (size_t i = 0; i < kNumTicketAgents; i++) {

ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets));
¥
for (size_t i = 0; i < kNumTicketAgents; i++) {

ticketAgents[i].join();
}

cout << "Ticket selling done!" << endl;
return 9;



Race Condition: Overselling Tickets

There is a race condition here! Threads could interrupt each other in between
checking for remaining tickets and selling them.

static void sellTickets(size t id, size_ t& remainingTickets) {
while (remainingTickets > 0) {
sleep for(500); // simulate "selling a ticket”
remainingTickets--;

* If thread A sees tickets remaining and commits to selling a ticket, another
thread B could come in and sell that same ticket before thread A does.

* This can happen because this portion of code isn’t atomic.

11



Race Condition: Overselling Tickets

If thread A sees tickets remaining and commits to selling a ticket, another thread
B could come in and sell that same ticket before thread A does.

static void sellTickets(size t id, size_ t& remainingTickets) {
while (remainingTickets > 0) {
sleep for(500); // simulate "selling a ticket”
remainingTickets--;

¥

* Atomic means it happens in its entirety without interruption. Cannot be
observed in the middle.

* We want a thread to do the entire check-and-sell operation uninterrupted by
other threads executing this region. 12




It would be nice if we could

allow only one thread at a

time to execute a region of
code.




e Critical Sections

Plan For Today

cp -r /afs/ir/class/csl1l1l/lecture-code/lectl13 .

14



Critical Section

A critical section is a section of code that should be executed by only one thread
at a time.

static void sellTickets(size t id, size_t& remainingTickets) {
while (remainingTickets > 0) {
sleep for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("
<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits.

<< endl << osunlock;

What should we make a critical section? Key: keep them as small as possible to
protect performance.

15



Critical Section

A critical section is a section of code that should be executed by only one thread
at a time.

static void sellTickets(size t id, size_ t& remainingTickets) {
while (remainingTickets > 0) {
sleep for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("
<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits.

<< endl << osunlock;

What should we make a critical section? Key: keep them as small as possible to

protect performance.
16



Critical Section

A critical section is a section of code that should be executed by only one thread
at a time.

static void sellTickets(size t id, size_t& remainingTickets) {
while (true) {
if (remainingTickets == @) break;
sleep for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("
<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << 1id
<< " sees no remaining tickets to sell and exits.

<< endl << osunlock;

}

What should we make a critical section? Key: keep them as small as possible to
protect performance. 17



Critical Section

A critical section is a section of code that should be executed by only one thread
at a time.

static void sellTickets(size t id, size_t& remainingTickets) {
while (true) {
if (remainingTickets == @) break;
size t myTicket = remainingTickets;
remainingTickets--;
sleep for(500); // simulate "selling a ticket”
cout << oslock << "Thread #" << id << " sold a ticket ("
<< myTicket - 1 << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << 1id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

18



Critical Section

A critical section is a section of code that should be executed by only one thread
at a time.

static void sellTickets(size t id, size_t& remainingTickets) {
while (true) {
ﬂ ﬂ // only 1 thread can proceed at a time
if (remainingTickets == @) break;
size t myTicket = remainingTickets;
remainingTickets--;
// once thread passes here, another can go
sleep for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("
<< myTicket - 1 << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << 1id
<< " sees no remaining tickets to sell and exits."” << endl << osunlock;

19



Critical Section

Wait a minute — one benefit of threads is running concurrently. Doesn’t a
critical section defeat the point if only one thread can execute one at a time?

e Critical sections can absolutely bottleneck performance — for this reason, we
want them to be as small as possible.

* Some critical sections (such as here) are unavoidable to ensure correctness; it’s

not always possible for multiple threads to simultaneously run every section of
code.

20



* Mutexes

Plan For Today

cp -r /afs/ir/class/csl1l1l/lecture-code/lectl13 .

21



A mutex ("mutual exclusion”) is a type of variable meant to be shared across
threads, and which can be “owned” by only 1 thread at a time.

If you have a mutex myMutex, call lock on it to take ownership of it (behaves as
an atomic operation):

myMutex.lock();

Call unlock on it when you are the owner and want to give up ownership of it
(behaves as an atomic operation):

myMutex.unlock();

Critically: lock() will block if a thread calls lock and another thread currently
owns that mutex. lock() unblocks once the lock is available again.

(A mutex is initiallv unlocked when created) 22



int main(int argc, const char *argv[]) {
thread ticketAgents[kNumTicketAgents];
size t remainingTickets = 250;
mutex counterLock;

for (size t 1 = 0; i < kNumTicketAgents; i++) {
ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets),
ref (counterLock));

}

23




Lock the mutex at the start of the critical section to limit only 1 thread at a time
to execute the critical section.

static void sellTickets(size t id, size_ t& remainingTickets, mutex&
counterLock) {
while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == @) break;
size t myTicket = remainingTickets;
remainingTickets--;
// once thread passes here, another can go
sleep for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("
<< myTicket - 1 << " remain)." << endl << osunlock;

24




When a thread calls lock():

e |f the lock is unlocked: the thread now owns the lock and continues execution
e |If the lock is locked: the thread blocks and waits until the lock is unlocked

* |f multiple threads are waiting for a lock: they all wait until it's unlocked, one receives lock

(not necessarily one waiting longest)

static void sellTickets(size t id, size_ t& remainingTickets, mutex&
counterLock) {
while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == @) break;
size t myTicket = remainingTickets;
remainingTickets--;
// once thread passes here, another can go
sleep for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("
<< myTicket - 1 << " remain)." << endl << osunlock;

25




Unlock the mutex at the end of the critical section.

Calling unlock lets another waiting thread (if any) take ownership of the lock.

(“Bridge” that only 1 thread can cross at a time)

static void sellTickets(size t id, size_ t& remainingTickets, mutex&
counterLock) {
while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == @) break;
size t myTicket = remainingTickets;
remainingTickets--;

counterLock.unlock(); // once thread passes here, another can go

sleep for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("
<< myTicket - 1 << " remain)." << endl << osunlock;

26




Demo: stalled-ticket-
agents.cc



Stalled Ticket Agents

static void sellTickets(size t id, size_t& remainingTickets, mutex&
counterLock) {
while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == @) break;
size t myTicket = remainingTickets;
remainingTickets--;
counterLock.unlock(); // once thread passes here, another can go
sleep for(500); // simulate "selling a ticket”
cout << oslock << "Thread #" << id << " sold a ticket ("
<< myTicket - 1 << " remain)." << endl << osunlock;

¥

What might have caused some ticket agents to stall?

Respond on PollEv:
pollev.com/cs111

28



What might have caused some ticket agents to stall?

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Stalled Ticket Agents

static void sellTickets(size t id, size_t& remainingTickets, mutex&

counterLock) {
while (true) {

counterLock.lock(); // only 1 thread can proceed at a time

if (remainingTickets == 0) {
counterLock.unlock(); // must give up lock before exiting
break;

}

size t myTicket = remainingTickets;

remainingTickets--;

counterLock.unlock(); // once thread passes here, another can go

sleep for(500); // simulate "selling a ticket"

Make sure to trace each thread's possible paths of execution to ensure they

always give back shared resources like locks.
30



Other times you need a mutex:

* When there are multiple threads writing to a variable
* When there is a thread writing and one or more threads reading

Note: data structures in particular are not always thread-safe — generally not
safe to assume they are unless explicitly stated.

Why do you not need a mutex when there are no writers (only readers)?

31



Multiple Mutexes

It’s possible to have more than one mutex per program — e.g. to limit access to

separate and unrelated critical sections.

void funcl(int& counterl,
mutex& counterllLock) {
counterllLock.lock();
counterl++;
counterllLock.unlock();

}

int main() {
int counterl = 0;
int counter2 = 0;
mutex counterllLock;
mutex counter2lLock;

void func2(int& counter2,
mutex& counter2lLock) {
counter2Lock.lock();
counter2--;
counter2Lock.unlock();

thread t1(funcl, ref(counterl), ref(counterllLock));
thread t2(func2, ref(counter2), ref(counter2lLock));
... // make more threads that also call these functions

32




Multiple Mutexes

It’s possible to have more than one mutex per program — e.g. to limit access to
separate and unrelated critical sections.

void funcl(int& counterl,
mutex& counterllLock) {
counterlLock.lock();
counterl++;
counterlLock.unlock();

¥

void func2(int& counter2,
mutex& counter2lLock) {
counter2lLock.lock();
counter2--;
counter2Lock.unlock();

¥

int main() {
int counterl = 0;
int counter2 = 0;
mutex counterllLock;
mutex counter2lLock;
thread tl(threadl, 1
thread t2(thread2,

Ok for a thread to modify counterl and
another thread to modify counter2
concurrently, but not ok for two threads to both
. modlfy counterl, or both modlfy counter?2.

. // make more threads that also call these functlons

£




Multiple Mutexes

It’s possible to have more than one mutex per program — e.g. to limit access to

separate and unrelated critical sections.

void funcl(int& counterl,
mutex& counterllLock) {
counterlLock.lock();
counterl++;
counterlLock.unlock();

¥

void func2(int& counter2,
mutex& counter2lLock) {
counter2lLock.lock();
counter2--;
counter2Lock.unlock();

¥

int main() { |

int counterl 0;
int counter2 = 0;
mutex counterllLock;
mutex counter2lLock;

Rule of thumb: we usually create a mutex
for each single variable or critical section
thread t1(thread1, re that We must limit thread access to.

thread t2(thread2, ref(counter2), ref(counter2lLock));
... // make more threads that also call these functions

34




Mutexes Summary

A mutex ("mutual exclusion”) is a type of variable meant to be shared across
threads, and which can be owned by only 1 thread at a time.

* |lets us enforce this pattern of only 1 thread having access to something.
* Also known as a lock (there are other types of locks as well)

* A way to add a constraint to your program: “only one thread may access or
execute this at a time”.

* You make a mutex for each distinct thing you need to limit access to.

35



 Deadlock

Plan For Today

cp -r /afs/ir/class/csl1l1l/lecture-code/lectl13 .

36



Deadlock

Deadlock occurs when multiple threads are all blocked, waiting on a resource
owned by one of the other threads. None can make progress! Example:

Thread A Thread B
mutexl.lock(); mutex2.lock();
mutex2.lock(); mutexl.lock();

E.g. if thread A executes 1 line, then thread B executes 1 line, deadlock!

One prevention technique - prevent circularities: all threads request resources in
the same order (e.g., always lock mutex1 before mutex2.)

Another — limit number of threads competing for a shared resource

37



Plan For Today

* Dining Philosophers

cp -r /afs/ir/class/csl1l1l/lecture-code/lectl13 . 38




Deadlock Example: Dining

Philosophers Simulation

* Five philosophers sit around a circular table, eating spaghetti

* There is one fork for each of them

* Each philosopher thinks, then eats, and repeats this three times for their
three daily meals.

* To eat, a philosopher must grab the fork on their left and the fork on their
right. Then they chow on spaghetti to nourish their big, philosophizing brain.

* When they're full, they put down the forks in the same order they picked them
up and return to thinking for a while.

* To think, a philosopher keeps to themselves for some amount of
time. Sometimes they think for a long time, and sometimes they barely think
at all.

39



Dining Philosophers

https://commons.wikimedia.org/wiki/File:An_illustration_of_the dining philosophers problem.png 40



Dining Philosophers

Goal: we must encode resource constraints into our program.
Example: for a given fork, how many philosophers can use it at a time? One.
How can we encode this into our program? Make a mutex for each fork.

41



Dining Philosophers

static void philosopher(size_t id, mutex& left, mutex&
right) { ... }

int main(int argc, const char *argv[]) {
mutex forks|[kNumForks];
thread philosophers[kNumPhilosophers];
for (size_t i = 0; i < kNumPhilosophers; i++) {
philosophers[i] = thread(philosopher, i,
ref(forks[i]),
ref(forks[(i + 1) % kNumPhilosophers]));

¥
for (thread& p: philosophers) p.join();
return ©;



Dining Philosophers

A philosopher thinks and eats, and repeats this 3 times.

static void philosopher(size_t id, mutex& left, mutex&
right) {
for (size t i = 0; i < kNumMeals; i++) {
think(id);
eat(id, left, right);

43



Dining Philosophers

think is modeled as sleeping the thread for some amount of time.

static void think(size t id) {
cout << oslock << id << "
<< endl << osunlock;

sleep for(getThinkTime());
cout << oslock << id << "
<< endl << osunlock;

starts thinking."

all done thinking.

44



Dining Philosophers

eat is modeled as grabbing the two forks, sleeping for some amount of time,
and putting the forks down.

static void eat(size_t id, mutex& left, mutex& right) {
left.lock();

right.lock();
cout << oslock << id << " starts eating om nom nom

nom." << endl << osiLSpojler: there is a race condition here that

sleep_for(getEal| s to deadlock — deadlock occurs when
cout << oslock <«

<< osunlock multiple threads are all blocked, waiting on a
left.unlock(); resource owned by one of the other blocked
right.unlock(); threads. When could this happen?




Food For Thought

What if: all philosophers grab their left fork and then go off the CPU?

* Deadlock! All philosophers will wait on their right fork, which will never
become available

 Testing our hypothesis: insert a sleep_for call in between grabbing the two
forks

* We should be able to insert a sleep_for call anywhere in a thread routine and
have no concurrency issues. Let’s try it!

dining-philosophers-with-deadlock.cc

46



* Recap: Threads Lecture 13 takeaway: A mutex
* Critical Sections (“lock™) can help us limit critical

» Mutexes sections to 1 thread at a time. A
e Deadlock thread can lock a mutex to take
* Dining Philosophers ownership of it, and unlock it to

give it back. Locking a locked
mutex will block the thread until
the mutex Is available. We must
watch out for race conditions!

Next time: condition variables

cp -r /afs/ir/class/cslll/lecture-code/lectl3 . 50




	Slide 1: CS111, Lecture 13 Race Conditions and Locks
	Slide 2: CS111 Topic 3: Multithreading, Part 1
	Slide 3: Learning Goals
	Slide 4: Plan For Today
	Slide 5: Plan For Today
	Slide 6: From Processes to Threads
	Slide 7: C++ Thread
	Slide 8: C++ Thread
	Slide 9: Race Conditions
	Slide 10: Parallelizing Tasks
	Slide 11: Race Condition: Overselling Tickets
	Slide 12: Race Condition: Overselling Tickets
	Slide 13: It would be nice if we could allow only one thread at a time to execute a region of code.
	Slide 14: Plan For Today
	Slide 15: Critical Section
	Slide 16: Critical Section
	Slide 17: Critical Section
	Slide 18: Critical Section
	Slide 19: Critical Section
	Slide 20: Critical Section
	Slide 21: Plan For Today
	Slide 22: Mutexes
	Slide 23: Mutexes
	Slide 24: Mutexes
	Slide 25: Mutexes
	Slide 26: Mutexes
	Slide 27: Demo: stalled-ticket-agents.cc
	Slide 28: Stalled Ticket Agents
	Slide 29
	Slide 30: Stalled Ticket Agents
	Slide 31: Mutex Uses
	Slide 32: Multiple Mutexes
	Slide 33: Multiple Mutexes
	Slide 34: Multiple Mutexes
	Slide 35: Mutexes Summary
	Slide 36: Plan For Today
	Slide 37: Deadlock
	Slide 38: Plan For Today
	Slide 39: Deadlock Example: Dining Philosophers Simulation
	Slide 40: Dining Philosophers
	Slide 41: Dining Philosophers
	Slide 42: Dining Philosophers
	Slide 43: Dining Philosophers
	Slide 44: Dining Philosophers
	Slide 45: Dining Philosophers
	Slide 46: Food For Thought
	Slide 50: Recap

