CS111, Lecture 14

Condition Variables

Optional reading:

Operating Systems: Principles and Practice (2"9 Edition): Sections 5.2-5.4
and Section 6.5

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared,
uploaded, or distributed. (without expressed written permission)

CS111 Topic 3: Multithreading, Part 1

Topic 3: Multithreading - How can we have concurrency within a single
process? How does the operating system support this?

Multithreading RECE Condition

conditions and Multithreading

Introduction Variables Patterns

locks

Lecture 12 Last Lecture This Lecture Lecture 15

assign4: implement several multithreaded programs while eliminating race conditions!

Learning Goals

* Learn about ways to add constraints to our programs to prevent deadlock

* Learn how condition variables can let threads signal to each other and wait for
conditions to become true

Plan For Today

* Recap: mutexes and dining philosophers
* Encoding resource constraints
e Condition Variables

cp -r /afs/ir/class/csl1l1l/lecture-code/lectlsd . 4

Plan For Today

* Recap: mutexes and dining philosophers

cp -r /afs/ir/class/csl1l1l/lecture-code/lectlsd . 5

A mutex ("mutual exclusion”) is a variable type that lets us enforce the pattern
of only 1 thread having access to something at a time.

* You make a mutex for each distinct thing you need to limit access to.
* You call lock() on the mutex to attempt to take the lock
* You call unlock() on the mutex when you are done to give the lock back

* A way to add a constraint to your program: “only one thread may access or
execute this at a time”.

* Commonly have one mutex for each shared resource (if risk of concurrent
modification or modification + reading)

Ticket Agents

static void sellTickets(size t id, size_t& remainingTickets, mutex&

counterLock) {
while (true) {

counterLock.lock(); // only 1 thread can proceed at a time

if (remainingTickets == 0) {
counterLock.unlock(); // must give up lock before exiting
break;

}

size t myTicket = remainingTickets;

remainingTickets--;

counterLock.unlock(); // once thread passes here, another can go

sleep for(500); // simulate "selling a ticket"

Deadlock

Deadlock occurs when multiple threads are all blocked, waiting on a resource
owned by one of the other threads. None can make progress! Example:

Thread A Thread B
mutexl.lock(); mutex2.lock();
mutex2.lock(); mutexl.lock();

E.g. if thread A executes 1 line, then thread B executes 1 line, deadlock!

One prevention technique - prevent circularities: all threads request resources in
the same order (e.g., always lock mutex1 before mutex2.)

Another — limit number of threads competing for a shared resource

Deadlock Example: Dining

Philosophers Simulation

* Five philosophers sit around a circular table, eating spaghetti

* There is one fork for each of them

* Each philosopher thinks, then eats, and repeats this three times for their
three daily meals.

* To eat, a philosopher must grab the fork on their left and the fork on their
right. Then they chow on spaghetti to nourish their big, philosophizing brain.

* When they're full, they put down the forks in the same order they picked them
up and return to thinking for a while.

* To think, a philosopher keeps to themselves for some amount of
time. Sometimes they think for a long time, and sometimes they barely think
at all.

Dining Philosophers

eat is modeled as grabbing the two forks, sleeping for some amount of time,
and putting the forks down.

static void eat(size_t id, mutex& left, mutex& right) {
left.lock();

right.lock();
cout << oslock << id << " starts eating om nom nom

nom." << endl << osiLSpojler: there is a race condition here that

sleep_for(getEal| s to deadlock — deadlock occurs when
cout << oslock <«

<< osunlock multiple threads are all blocked, waiting on a
left.unlock(); resource owned by one of the other blocked
right.unlock(); threads. When could this happen?

Food For Thought

What if: all philosophers grab their left fork and then go off the CPU?

* Deadlock! All philosophers will wait on their right fork, which will never
become available

 Testing our hypothesis: insert a sleep_for call in between grabbing the two
forks

* We should be able to insert a sleep_for call anywhere in a thread routine and
have no concurrency issues.

* We (incorrectly) assumed that at least one philosopher is always able to pick
up both of their forks. How can we fix this? Need to limit number of
philosophers that try to pick up a fork.

dining-philosophers-with-deadlock.cc

11

Plan For Today

* Encoding resource constraints

cp -r /afs/ir/class/csl1l1l/lecture-code/lectlsd . 12

Encoding Resource Constraints

Goal: we must encode resource constraints into our program.
Example: how many philosophers can try to eat at the same time? Four.
* Alternatively: how many philosophers can eat at the same time? Two.

* Why might the first one be better? Imposes less bottlenecking while still
solving the issue.

How can we encode this into our program?

Have a counter of “permits”. Initially 4. A philosopher must have a permit
(decrement counter or wait) to try to eat. Once done eating, a philosopher
returns its permit (increment counter).

13

Tickets, Please...

int main(int argc, const char *argv[]) {
mutex forks[kNumForks];

size t permits = kNumForks - 1;
mutex permitsLock;

thread philosophers[kNumPhilosophers];
for (size_ t 1 = 0; 1 < kNumPhilosophers; i++) {
philosophers[i] = thread(philosopher, i, ref(forks[i]),

ref(forks[(i + 1) % kNumPhilosophers]),
ref(permits), ref(permitsLock));

¥

for (thread& p: philosophers) p.join();

return 0;

Tickets, Please...

A philosopher thinks and eats, and repeats this 3 times.

static void philosopher(size_t id, mutex& left, mutex&
right, size t& permits, mutex& permitsLock) {
for (size t i = 0; i < kNumMeals; i++) {
think(id);
eat(id, left, right, permits, permitsLock);

15

Tickets, Please...

static void eat(size_ t id, mutex& left, mutex& right,
size t& permits, mutex& permitsLock) {

waitForPermission(permits, permitsLock);

left.lock();

right.lock();

cout << oslock << 1id <«
nom." << endl << osunlock;

sleep for(getEatTime());

cout << oslock << 1id << " all done eating."” << endl

<< osunlock;
grantPermission(permits, permitsLock);
left.unlock();

right.unlock();

starts eating om nom nom

To put a permit back, increment the counter by 1 and continue.

static void grantPermission(size t& permits, mutex&
permitsLock) {

permitsLock.lock();
permits++;
permitsLock.unlock();

17

walitForPermission

* If there are permits, decrement the counter by 1 and continue

* If there aren’t permits, wait for a permit, then decrement by 1 and continue

static void waitForPermission(size_ t& permits, mutex&
permitsLock) {
while (true) {
permitsLock.lock();
if (permits > @) break;
permitsLock.unlock();
// wait a little while (how??)
}
permits--;
permitsLock.unlock();
1 18

walitForPermission

* If there are permits, decrement the counter by 1 and continue

* If there aren’t permits, wait for a permit, then decrement by 1 and continue

static void waitForPermission(size_t& permits, mutex&
permitsLock) {

while {EF‘EE)k{l) This is called busy
permitsSLOCK. 10C) L
if (permits > @) break; waiting (ba_d)' we ar? _
permitsLock.unlock(); un_necessarl_ly and arbitrarily
sleep(??); using CPU time to check
L when a permit is available.
permits--;

permitsLock.unlock();
1 19

It would be nice iIf someone
could let us know when
they return their permit.
Then, we can sleep until

this happens.

Plan For Today

e Condition Variables

cp -r /afs/ir/class/csl1l1l/lecture-code/lectlsd . 21

Condition Variables

A condition variable is a variable type that can be shared across threads and
used for one thread to notify other thread(s) when something happens.
Conversely, a thread can also use this to wait until it is notified by another
thread.

* You make one for each distinct event you need to wait / notify for.

* We can call wait on the condition variable to sleep until another thread signals
this condition variable (no busy waiting).

* You call notify_all on the condition variable to send a notification to all waiting
threads and wake them up.

* Analogy: radio station — broadcast and tune in

22

Condition Variables

Identify a single kind of event that we need to wait / notify for
Ensure there is proper state to check if the event has happened

3. Create a condition variable and share it among all threads either waiting for
that event to happen or triggering that event

4. Identify who will notify that this happens, and have them notify via the
condition variable

5. Identify who will wait for this to happen, and have them wait via the
condition variable

23

Condition Variables

1. Identify a single kind of event that we need to wait / notify for

The event here is “some permits are again available”.

24

Condition Variables

2. Ensure there is proper state to check if the event has happened

We can check whether there are permits now
available by checking the permits count.

PS5

Condition Variables

3. Create a condition variable and share it among all threads either waiting for
that event to happen or triggering that event

26

Condition Variables

int main(int argc, const char *argv[]) {
mutex forks[kNumForks];
size t permits = kNumForks - 1;
mutex permitslLock;
condition variable any permitsCV;

thread philosophers[kNumPhilosophers];
for (size_ t i1 = 0; 1 < kNumPhilosophers; i++) {
philosophers[i] = thread(philosopher, i, ref(forks[i]),
ref(forks[(i + 1) % kNumPhilosophers]),
ref(permits), ref(permitsCV),

ref(permitsLock));
}
for (thread& p: philosophers) p.join();
return 0O;

Condition Variables

4. l|dentify who will notify that this happens, and have them notify via the
condition variable

When someone returns a permit and there were
no permits available previously, notify all.

28

We must notify all once permits have become available again to wake up waiting
threads.

static void grantPermission(size t& permits,

condition variable any& permitsCV, mutex& permitslLock) {
permitsLock.lock();
permits++;
if (permits == 1) permitsCV.notify all();
permitsLock.unlock();

When someone returns a permit and there were no permits
available previously (meaning some people might be waiting),
notify all. (Side note: could we notify every time instead?)

Po

Condition Variables

5. ldentify who will wait for this to happen, and have them wait via the
condition variable

If we need a permit but there are none available, wait.

30

walitForPermission (In Progress)

If no permits are available, we must wait until one becomes available.

Key Idea: we must give up ownership of the lock when we wait, so that
someone else can put a permit back.

static void waitForPermission(size_t& permits,
condition variable any& permitsCV, mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();
}
permits--;
permitsLock.unlock();

Other threads need the lock to return permits:

static void grantPermission(size t& permits,
condition variable any& permitsCV, mutex& permitsLock) {
permitsLock.lock();

permits++;
if (permits == 1) permitsCV.notify all();

permitsLock.unlock();

32

walitForPermission (In Progress)

If no permits are available, we must wait until one becomes available.

Key Idea: we must give up ownership of the lock when we wait, so that
someone else can put a permit back.

static void waitForPermission(size_t& permits,
condition variable any& permitsCV, mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();

permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock(); — :
} This is the idea for what we want to do — but
permits--; there are some additional cases/quirks we
) permitsiock.unlock(); eed to account for.

B3

waltForPermission (Final version)

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
while (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

This is the final implementation with the final version of wait() that takes a
mutex parameter and which is called in a while loop. Let’s build our way to this
solution!

34

Deadlock, Round 2

static void waitForPermission(size_t& permits, condition variable any&
permitsCV, mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();

permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();
oo Respond on PollEv:
permlits--;
permitsLock.unlock(); pollev.com/cs111

}
There is a race condition here that could lead to deadlock; specifically, it’s

possible for a thread to miss a notification. How is this possible? Hints:
* As soon as we release a lock, another thread can use it
* if a thread isn’t waiting on a CV, it won’t get a notification from another thread

35

There is a race condition here that could lead to deadlock; specifically, it's possible for a thread
to miss a notification. How is this possible?

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitslLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();
}
permits--;
permitsLock.unlock();

F—_—_—_—_—1

[PERMIT]

hread #1 Thread #2 37

Deadlock: waitForPermission

permitsLock.lock();

F—_—_—_—_—1

[PERMIT] ‘
hread #1 Thread #2 38

Deadlock: waitForPermission

if (permits == 0) {

I-————_—————'|
|permits = 0, | need to wait for
a permit in order

‘ to eat.
[PERMIT]
hread #1 Thread #2 39

Deadlock: waitForPermission

permitsLock.unlock();

I-————_—————'|
|permits = 0, | need to wait for
a permit in order

‘ to eat.
[PERMIT]
hread #1 Thread #2 40

Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();
}
permits--;
permitsLock.unlock();

}

F————_—————'|
All done eating! | |permits = 0,
will return my permit.

[PERMIT]

hread #1 Thread #2 41

Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();
}
permits--;
permitsLock.unlock();

}

F————_—————'|
All done eating! | |permits = 1
will return my permit.

Thread #1 Thread #2 42

Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,

mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();
}
permits--;
permitsLock.unlock();
}
o
oh! | should notify |permits = 1,
that there Is a
permit now.

43

Thread #1 Thread #2

Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,

mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)

permitsLock.lock();

}
permits--;
permitsLock.unlock();
}
F————_—————'|
“Attention waiting |permits = 1,

threads, a permit is
available!”

o)

Thread #1 Thread #2

44

Deadlock: waitForPermission

permitsCV.wait();

Thread #1 Thread #2 45

Deadlock: waitForPermission

permitsCV.wait();

F—_—_—_—_—1

Q *100 years later*

Thread #1 Thread #2 46

Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitslLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
// AIR GAP HERE - someone could acquire the lock before we wait
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

Key ideas:

* We must release the lock when waiting so someone else can put a permit back
(which requires having the lock)

* But if we release the lock before calling wait, someone else could swoop in and
put a permit back before we call wait(), meaning we will miss the notification!
If that is the last notification, we may wait forever.

47

Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

Solution: condition variables are meant for these situations.

* wait() takes a mutex as a parameter

* |t will unlock the mutex for us after we are put to sleep.

* When we are notified, it will only return once it has reacquired the mutex for
us (in other words, waits for lock if already owned, and then returns).

48

Condition Variable Wait

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

cv.wait() does the following:
1. it puts the caller to sleep and unlocks the given lock, all atomically
2. it wakes up when the cv is signaled
3. upon waking up, it tries to acquire the given lock (and blocks until it's able to do
S0)
4. then, cv.wait returns 49

waitForPermission (In progress)

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

Spoiler: there is a race condition here that could lead to negative permits if
multiple threads are waiting on a permit (e.g. say we limit permits to 3) and just
1 is returned.

50

waltForPermission Over-permitting

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);

¥
permits--;
permitsLock.unlock();
¥
permits = 0,
[PERMIT] ‘

Thread #2 Thread #3 °!

hread #1

waltForPermission Over-permitting

permitsCV.wait(permitslLock);

We need to wait
for a permit in

‘ order to eat. ‘
[PERMIT]

‘h read #1 Thread #2 Thread #3 °?

waltForPermission Over-permitting

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);

}
permits--;
permitsLock.unlock();
}
All done eating! 1 | T T T =<

will return my permit.

[PERMIT]

h read #1 Thread #2 Thread #3 >3

waltForPermission Over-permitting

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);

}
permits--;
permitsLock.unlock();
}
. | permits = 1I
All done eating! 1 | T T T =<

will return my permit.

Thread #1 Thread #2 Thread #3 ¢

waltForPermission Over-permitting

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,

mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitslLock);

}

permits--;

permitsLock.unlock();
}

I-_—_—__—_—_'|

Oh! | should notify jpermits = 1,
that there is a
permit now.

Thread #1 Thread #2 Thread #3 °°

waltForPermission Over-permitting

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

}

e ———
“Attention waiting Lpermits = 1,
threads, a permit is
available!”

®:

Thread #1 Thread #2 Thread #3 °°

waltForPermission Over-permitting

permitsCV.wait(permitsLock);

©

Thread #1 Thread #2 Thread #3

waltForPermission Over-permitting

permits--;

©

Thread #1 Thread #2 Thread #3 °8

waltForPermission Over-permitting

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

[PERMIT]

hread #2 Thread #3 °°

Thread #1

waltForPermission Over-permitting

permitsCV.wait(permitslLock);

[PERMIT]

Thread #1 hread #2 Thread #3 ©°

waltForPermission Over-permitting

permits--;

[PERMIT]

Thread #1 hread #2 Thread #3 ©!

waltForPermission Over-permitting

permits--;

permlts = <very large number> |

FAKE

PERMIT
??

Thread #1 hread #2 Thread #3 ©?

[PERMIT]

waltForPermission Over-permitting

Key Idea: If we are waiting and then woken up by a notification, it’s possible by
the time we exit wait(), there are no permits, so we must wait again.

* Note: wait() reacquires the lock before returning

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitslLock);
// by the time we wake up here, all the permits could already be gone!
}
permits--;
permitsLock.unlock();

63

waltForPermission (Final version)

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
while (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

Solution: we must call wait() in a loop, in case we must call it again to wait
longer.

dining-philosophers-with-cv-wait.cc

64

Spurious Wakeups

static void waitForPermission(size_t& permits, condition_variable any& permitscCV,
mutex& permitsLock) {
permitsLock.lock();
while (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

It turns out that in addition to this reason, condition variables can have spurious
wakeups — they wake us up even when not being notified by another thread!
Thus, we should always wrap calls to wait in a while loop.

65

Condition Variable Key Takeaways

A condition variable is a variable type that can be shared across threads and
used for one thread to notify other thread(s) when something

happens. Conversely, a thread can also use this to wait until it is notified by
another thread.

* We can call wait(lock) to sleep (no busy waiting) until another thread signals
this condition variable. The condition variable will unlock and re-lock the
specified lock for us.

* This is necessary because we must give up the lock while waiting so another thread may
return a permit, but if we unlock before waiting, there is a race condition.
* We can call notify_all() to send a signal to waiting threads and wake them up.

* We call wait(lock) in a loop in case we are woken up but must wait longer

* This could happen if multiple threads are woken up for a single new permit, or because

of spurious wakeups. .

Condition Variables

Identify a single kind of event that we need to wait / notify for
Ensure there is proper state to check if the event has happened

3. Create a condition variable and share it among all threads either waiting for
that event to happen or triggering that event

4. Identify who will notify that this happens, and have them notify via the
condition variable

5. Identify who will wait for this to happen, and have them wait via the
condition variable

67

Recap

* Recap: mutexes and dining philosophers
* Encoding resource constraints
* Condition Variables

Next time: the monitor design pattern

Lecture 14 takeaway:.

Condition variables let us wait

on an event to occur and
notify other threads that an
event has occurred, all
without busy waiting.

cp -r /afs/ir/class/cslll/lecture-code/lectlsd .

68

	Slide 1: CS111, Lecture 14 Condition Variables
	Slide 2: CS111 Topic 3: Multithreading, Part 1
	Slide 3: Learning Goals
	Slide 4: Plan For Today
	Slide 5: Plan For Today
	Slide 6: Mutexes
	Slide 7: Ticket Agents
	Slide 8: Deadlock
	Slide 9: Deadlock Example: Dining Philosophers Simulation
	Slide 10: Dining Philosophers
	Slide 11: Food For Thought
	Slide 12: Plan For Today
	Slide 13: Encoding Resource Constraints
	Slide 14: Tickets, Please…
	Slide 15: Tickets, Please…
	Slide 16: Tickets, Please…
	Slide 17: grantPermission
	Slide 18: waitForPermission
	Slide 19: waitForPermission
	Slide 20: It would be nice if someone could let us know when they return their permit. Then, we can sleep until this happens.
	Slide 21: Plan For Today
	Slide 22: Condition Variables
	Slide 23: Condition Variables
	Slide 24: Condition Variables
	Slide 25: Condition Variables
	Slide 26: Condition Variables
	Slide 27: Condition Variables
	Slide 28: Condition Variables
	Slide 29: grantPermission
	Slide 30: Condition Variables
	Slide 31: waitForPermission (In Progress)
	Slide 32: grantPermission
	Slide 33: waitForPermission (In Progress)
	Slide 34: waitForPermission (Final version)
	Slide 35: Deadlock, Round 2
	Slide 36
	Slide 37: Deadlock: waitForPermission
	Slide 38: Deadlock: waitForPermission
	Slide 39: Deadlock: waitForPermission
	Slide 40: Deadlock: waitForPermission
	Slide 41: Deadlock: waitForPermission
	Slide 42: Deadlock: waitForPermission
	Slide 43: Deadlock: waitForPermission
	Slide 44: Deadlock: waitForPermission
	Slide 45: Deadlock: waitForPermission
	Slide 46: Deadlock: waitForPermission
	Slide 47: Deadlock: waitForPermission
	Slide 48: Deadlock: waitForPermission
	Slide 49: Condition Variable Wait
	Slide 50: waitForPermission (In progress)
	Slide 51: waitForPermission Over-permitting
	Slide 52: waitForPermission Over-permitting
	Slide 53: waitForPermission Over-permitting
	Slide 54: waitForPermission Over-permitting
	Slide 55: waitForPermission Over-permitting
	Slide 56: waitForPermission Over-permitting
	Slide 57: waitForPermission Over-permitting
	Slide 58: waitForPermission Over-permitting
	Slide 59: waitForPermission Over-permitting
	Slide 60: waitForPermission Over-permitting
	Slide 61: waitForPermission Over-permitting
	Slide 62: waitForPermission Over-permitting
	Slide 63: waitForPermission Over-permitting
	Slide 64: waitForPermission (Final version)
	Slide 65: Spurious Wakeups
	Slide 66: Condition Variable Key Takeaways
	Slide 67: Condition Variables
	Slide 68: Recap

