
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 15
The Monitor Pattern

2

CS111 Topic 3: Multithreading, Part 1

Multithreading
Introduction

Race
conditions and

locks

Condition
Variables

The Monitor
Pattern

Trust and Race
Conditions

Lecture 12 Lecture 13 Lecture 14 Lecture 16

assign4: ethics exploration + implementing 2 monitor pattern classes for 2
multithreaded programs.

Topic 3: Multithreading - How can we have concurrency within a single
process? How does the operating system support this?

This Lecture

3

Plan For Today

• Recap: mutexes, condition variables and dining philosophers

• Monitor pattern

• Example: Bridge Crossing

• Unique Locks

• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

4

Plan For Today

• Recap: mutexes, condition variables and dining philosophers

• Monitor pattern

• Example: Bridge Crossing

• Unique Locks

• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

5

Condition Variables

A condition variable is a variable type that can be shared across threads and
used for one thread to notify other thread(s) when something happens.
Conversely, a thread can also use this to wait until it is notified by another
thread.

• You make one for each distinct event you need to wait / notify for.

• We can call wait(lock) on the condition variable to sleep until another thread
signals this condition variable (no busy waiting). The condition variable will
unlock (at the beginning) and re-lock (at the end) the specified lock for us.

• You call notify_all on the condition variable to send a notification to all waiting
threads and wake them up.

• Analogy: radio station – broadcast and tune in

6

Condition Variables

1. Identify a single kind of event that we need to wait / notify for

2. Ensure there is proper state to check if the event has happened

3. Create a condition variable and share it among all threads either waiting for
that event to happen or triggering that event

4. Identify who will notify that this happens, and have them notify via the
condition variable

5. Identify who will wait for this to happen, and have them wait via the
condition variable

7

waitForPermission (Final version)
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 while (permits == 0) {
 permitsCV.wait(permitsLock);
 }
 permits--;
 permitsLock.unlock();
}

This is the final implementation with the final version of wait() that takes a
mutex parameter and which is called in a while loop.

8

Passing a Lock To CV.wait()

Why do we need to pass our mutex as a parameter to wait()?

• We must release the lock when waiting so someone else can put a permit back
(which requires having the lock)

• But if we release the lock before calling wait, someone else could swoop in and
put a permit back before we call wait(), meaning we will miss the notification!

static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsLock.unlock();
 // AIR GAP HERE – someone could acquire the lock before we wait!
 permitsCV.wait(); // (note: not final form of wait)
 permitsLock.lock();
 }
 permits--;
 permitsLock.unlock();
}

9

Passing a Lock To CV.wait()

Why do we need to call wait() in a while loop?

• If we are waiting and then woken up by a notification, it’s possible by the time
we exit wait(), there are no permits, so we must wait again.

• Note: wait() reacquires the lock before returning

• spurious wakeups – wakeups up even when not being notified by another
thread (!)

static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {
 permitsLock.lock();
 if (permits == 0) {
 permitsCV.wait(permitsLock);
 // by the time we wake up here, all the permits could already be gone!
 }
 permits--;
 permitsLock.unlock();
}

10

Plan For Today

• Recap: mutexes, condition variables and dining philosophers

• Monitor pattern

• Example: Bridge Crossing

• Unique Locks

• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

11

Multithreading Patterns

• Writing synchronization code is hard – difficult to reason about, bugs are tricky
if they are hard to reproduce

• E.g. how many locks should we use for a given program?
• Just one? Doesn’t allow for much concurrency

• One lock per shared variable? Very hard to manage, gets complex, inefficient

• Like with dining philosophers, we must consider many scenarios and have lots
of state to track and manage

• One design idea to help: the “monitor” design pattern - associate a single lock
with a collection of related variables, e.g. a class
• That lock is required to access any of those variables

12

Monitor Design Pattern

The monitor pattern is a design pattern for writing multithreaded code, where
we associate a single lock with a collection of related variables, e.g. a class.

• For a multithreaded program, we can define a class that encapsulates the key
multithreading logic and make an instance of it in our program.

• This class will have 1 mutex instance variable, and in all its methods we’ll lock
and unlock it as needed when accessing our shared state, so multiple threads
can call the methods

• We can add any other state or condition variables we need as well – but the
key idea is there is one mutex protecting access to all shared state, and which
is locked/unlocked in the class methods that use the shared state.

13

Plan For Today

• Recap: mutexes, condition variables and dining philosophers

• Monitor pattern

• Example: Bridge Crossing

• Unique Locks

• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

14

Bridge Crossing

Let’s write a program that simulates cars crossing a one-lane bridge.

• We will have each car represented by a thread, and they must coordinate as
though they all need to cross the bridge. Cars will arrive at the bridge at
various points in time.

• A car can be going either east or west

• All cars on bridge must be travelling in the same direction

• Any number of cars can be on the bridge at once

• A car from the other direction can only go once the coast is clear

One-Lane Bridge

15

Demo: car-simulation-no-
monitor-soln

16

Bridge Crossing

static void cross_bridge_east(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going westbound
 driveAcross(); // sleep
 // now we have crossed
}

static void cross_bridge_west(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going eastbound
 driveAcross(); // sleep
 // now we have crossed
}

A car thread would execute one of these two functions:

17

Arriving Eastbound

Key task: a thread needs to wait for it to be clear to cross.

E.g. car going eastbound:

• If other cars are already crossing eastbound, they can go

• If other cars are already crossing westbound, we must wait

“Waiting for an event to happen” -> condition variable!

For going east, we are waiting for the event ”no more cars are going
westbound”.

18

State

What variables do we need to
create to share across threads?

• 1 mutex to lock shared state

• Condition variable (for waiting to
go east)

• ?? (for going east)

• Condition variable (for waiting to
go west)

• ?? (for going west)

static void cross_bridge_east(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going westbound
 driveAcross(); // sleep
 // now we have crossed
}

static void cross_bridge_west(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going eastbound
 driveAcross(); // sleep
 // now we have crossed
}

Respond on PollEv:

pollev.com/cs111

19

20

State

What variables do we need to
create to share across threads?

• 1 mutex to lock shared state

• Condition variable (for waiting to
go east)

• Counter of cars crossing east

• Condition variable (for waiting to
go west)

• Counter of cars crossing west

static void cross_bridge_east(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going westbound
 driveAcross(); // sleep
 // now we have crossed
}

static void cross_bridge_west(size_t id) {
 approach_bridge(); // sleep
 // TODO: wait until no cars going eastbound
 driveAcross(); // sleep
 // now we have crossed
}

21

Live Coding: Bridge
Crossing

22

Plan For Today

• Recap: mutexes, condition variables and dining philosophers

• Monitor pattern

• Example: Bridge Crossing

• Unique Locks

• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

23

Unique Locks

• It is common to acquire a lock and hold onto it until the end of some scope
(e.g. end of function, end of loop, etc.).

• There is a convenient variable type called unique_lock that when created can
automatically lock a mutex, and when destroyed (e.g. when it goes out of
scope) can automatically unlock a mutex.

• Particularly useful if you have many paths to exit a function and you must
unlock in all paths.

24

leave_eastbound

We lock at the beginning of this function and unlock at the end.

void Bridge::leave_eastbound(size_t id) {
 bridge_lock.lock();
 n_crossing_eastbound--;
 if (n_crossing_eastbound == 0) {
 none_crossing_eastbound.notify_all();
 }
 print(id, "crossed", true);
 bridge_lock.unlock();
}

25

leave_eastbound

We lock at the beginning of this function and unlock at the end.

void Bridge::leave_eastbound(size_t id) {
 unique_lock<mutex> lock(bridge_lock);
 n_crossing_eastbound--;
 if (n_crossing_eastbound == 0) {
 none_crossing_eastbound.notify_all();
 }
 print(id, "crossed", true);
}

Auto-locks lock here

26

leave_eastbound

We lock at the beginning of this function and unlock at the end.

void Bridge::leave_eastbound(size_t id) {
 unique_lock<mutex> lock(bridge_lock);
 n_crossing_eastbound--;
 if (n_crossing_eastbound == 0) {
 none_crossing_eastbound.notify_all();
 }
 print(id, "crossed", true);
}

Auto-unlocks lock here (goes
out of scope)

27

arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {
 bridge_lock.lock();
 print(id, "arrived", true);
 while (n_crossing_westbound > 0) {
 none_crossing_westbound.wait(bridge_lock);
 }
 n_crossing_eastbound++;
 print(id, "crossing", true);
 bridge_lock.unlock();
}

28

arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {
 unique_lock<mutex> lock(bridge_lock);
 print(id, "arrived", true);
 while (n_crossing_westbound > 0) {
 none_crossing_westbound.wait(lock);
 }
 n_crossing_eastbound++;
 print(id, "crossing", true);
}

Auto-locks lock here

29

arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {
 unique_lock<mutex> lock(bridge_lock);
 print(id, "arrived", true);
 while (n_crossing_westbound > 0) {
 none_crossing_westbound.wait(lock);
 }
 n_crossing_eastbound++;
 print(id, "crossing", true);
}

Use it with CV instead of original lock (it has wrapper
methods for manually locking/unlocking!)

30

arrive_eastbound
void Bridge::arrive_eastbound(size_t id) {
 unique_lock<mutex> lock(bridge_lock);
 print(id, "arrived", true);
 while (n_crossing_westbound > 0) {
 none_crossing_westbound.wait(lock);
 }
 n_crossing_eastbound++;
 print(id, "crossing", true);
}

Auto-unlocks lock here (goes
out of scope)

31

Plan For Today

• Recap: mutexes, condition variables and dining philosophers

• Monitor pattern

• Example: Bridge Crossing

• Unique Locks

• assign4

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

32

Assign4

Assign4: ethics exploration + implementing 2 monitor pattern classes for 2
multithreaded programs.

• Data structures can be used to store condition variables or state

• Structs also helpful to bundle state together and make multiple instances of
structs

• Note: when you add elements to C++ data structures (e.g. vector, queue, set,
map) it inserts copies.

• condition variables cannot be copied. E.g. cannot create a condition variable
and push onto vector.

• For two above bullets: consider how pointers can help!

• Types: make sure to use condition_variable_any, and only notify_all for
condition variables (there’s also notify_one, but it’s not necessary for assign4)

33

Recap

• Recap: mutexes, condition variables
and dining philosophers

• Monitor pattern

• Example: Bridge Crossing

• Unique Locks

• assign4

Next time: race conditions, trust and
operating systems

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

Lecture 15 takeaway: The

monitor pattern combines

procedures and state into a

class for easier management

of synchronization. Then

threads can call its thread-

safe methods!

	Default Section
	Slide 1: CS111, Lecture 15 The Monitor Pattern
	Slide 2: CS111 Topic 3: Multithreading, Part 1
	Slide 3: Plan For Today
	Slide 4: Plan For Today
	Slide 5: Condition Variables
	Slide 6: Condition Variables
	Slide 7: waitForPermission (Final version)
	Slide 8: Passing a Lock To CV.wait()
	Slide 9: Passing a Lock To CV.wait()
	Slide 10: Plan For Today
	Slide 11: Multithreading Patterns
	Slide 12: Monitor Design Pattern
	Slide 13: Plan For Today
	Slide 14: Bridge Crossing
	Slide 15: Demo: car-simulation-no-monitor-soln
	Slide 16: Bridge Crossing
	Slide 17: Arriving Eastbound
	Slide 18: State
	Slide 19
	Slide 20: State
	Slide 21: Live Coding: Bridge Crossing
	Slide 22: Plan For Today
	Slide 23: Unique Locks
	Slide 24: leave_eastbound
	Slide 25: leave_eastbound
	Slide 26: leave_eastbound
	Slide 27: arrive_eastbound
	Slide 28: arrive_eastbound
	Slide 29: arrive_eastbound
	Slide 30: arrive_eastbound
	Slide 31: Plan For Today
	Slide 32: Assign4
	Slide 33: Recap

