
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 17
Dispatching

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 7 up

through Section 7.2

2

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

3

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

Why is answering this question important?

• Shows us what the mechanism looks like for switching between running
threads (today)

• Allows us to see how threads are represented and the fairness challenges for
who gets to run next / for how long (next time)

• Allows us to understand how locks and condition variables are implemented
(next week)

CS111 Topic 3: Multithreading

assign5: implement your own version of thread, mutex and condition_variable!

4

CS111 Topic 3: Multithreading, Part 2

Dispatching Scheduling
Scheduling and

Preemption

Implementing
Locks and
Condition
Variables

This Lecture Lecture 18 Lecture 19

assign5: implement your own version of thread, mutex and
condition_variable_any!

Lecture 20

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

5

Learning Goals

• Learn about how the operating system keeps track of threads and processes

• Understand the general mechanisms for switching between threads and when
switches occur

6

Plan For Today

• Overview: Dispatching and Scheduling

• Running a Thread

• Switching to Another Thread
• Context Switch Implementation

• How do we switch what code is running?

cp -r /afs/ir/class/cs111/lecture-code/lect17 .

7

Plan For Today

• Overview: Dispatching and Scheduling

• Running a Thread

• Switching to Another Thread
• Context Switch Implementation

• How do we switch what code is running?

cp -r /afs/ir/class/cs111/lecture-code/lect17 .

8

Scheduling And Dispatching

We have learned how user programs can create new processes and spawn
threads. But how does the operating system manage this internally? What
happens when we spawn a new thread or create a new process?

Key questions we will answer:

• How does the operating system track info for threads and processes? (today)

• How does the operating system run a thread and how does it switch between
threads (“dispatching”)? (today)

• Scheduling: How does the operating system decide which thread to run next?
(next time)

9

Plan For Today

• Overview: Dispatching and Scheduling

• Running a Thread

• Switching to Another Thread
• Context Switch Implementation

• How do we switch what code is running?

cp -r /afs/ir/class/cs111/lecture-code/lect17 .

10

Running a Thread

Threads are the “unit of execution” – processes aren’t executed, threads are.

• A processor has 1 or more “cores” - Each core contains a complete CPU
capable of executing a thread

• Typically have more threads than cores, but most may not need to run at any
given point in time (why? They are waiting for something)

• When the OS wants to run a thread, it loads its state (registers – more on this
later!) into a core, and starts or resumes it

Problem: once we run a thread, the OS is not running anymore! (e.g. 1 core)
How does it regain control?

11

Regaining Control

There are several ways control can switch back to the OS:

1. “Traps” (events that require OS attention):
1. System calls (like read or waitpid)

2. Errors (illegal instruction, address violation, etc.)

3. Page fault (accessing memory that must be loaded in) – more later…

2. “Interrupts” (events occurring outside current thread):
1. Character typed at keyboard

2. Completion of disk operation

3. Timer – to make sure OS eventually regains control

At this point, OS could then decide to run a different thread.

12

Plan For Today

• Overview: Dispatching and Scheduling

• Running a Thread

• Switching to Another Thread
• Context Switch Implementation

• How do we switch what code is running?

cp -r /afs/ir/class/cs111/lecture-code/lect17 .

13

Switching to Another Thread

Key Idea: when we switch from one thread to another, we must save the current
thread’s state (“freeze frame”) to resume it later.

• E.g., must remember current program values it’s using, and where it was
executing

Key Idea #2: we must also load the thread state of the new thread in to resume
it where it left off.

How can we remember this information? We must remember the CPU core(s)
register values and the thread’s stack space.

14

Aside: x86-64 Assembly Refresher

• A register is a 64-bit space inside a processor core.

• Each core has its own set of registers.

• Registers are like “scratch paper” for the processor. Data being calculated or
manipulated is moved to registers first. Operations are performed on
registers.

• Registers also hold parameters and return values for functions.

• Some registers have special responsibilities – e.g. %rsp always stores the
address of the current top of the stack.

Key Idea: when we switch to a new thread, we must remember our register
values – and by remembering %rsp, we also keep a reference to our stack. Then
we can load them in later when we run again. But where do we put these
register values?

15

Process and Thread State

The OS maintains a (private) process control block (“PCB”) for each process - a
set of relevant information about its execution. Lives as long as the process
does.

• Information about memory used by this process

• File descriptor table

• Info about threads in this process

• Other misc. accounting and info

16

Process and Thread State

The OS maintains a (private) process control block (“PCB”) for each process - a
set of relevant information about its execution. Lives as long as the process
does.

• Information about memory used by this process

• File descriptor table

• Info about threads in this process

• Other misc. accounting and info

17

Thread State

• Every process has 1 main thread and can spawn
additional threads.

• All main info in the PCB (e.g. memory info for
the entire process) is relevant to all threads

• Each thread also has some of its own private info
– we can use this to store thread state.

• When we want to switch threads, store the current
thread’s info, and load in the new thread’s info.

Process A
Control Block

A2
A1

Threads

A3

thread

state

18

Switching Between Threads

The dispatcher is OS code that runs on each core that switches between threads

• Not a thread – code that is invoked to perform the dispatching function

• Lets a thread run, then switches to another thread, etc.

• Context switch – changing the thread currently running to another thread. We
must save the current thread state (registers) and load in the new thread state.

• The context switch function is funky – like running a function that, as part of its
execution, returns to a completely different function in a completely different
thread!!

• If we context switch to a new thread, we call context switch but then return to the start
of the function the new thread is supposed to run.

• If we context switch to a thread that ran before, we call context switch but then return
to where that thread called context switch previously when it was switched off.

19

Demo: context-switch.cc

20

Plan For Today

• Overview: Dispatching and Scheduling

• Running a Thread

• Switching to Another Thread
• Context Switch Implementation

• How do we switch what code is running?

cp -r /afs/ir/class/cs111/lecture-code/lect17 .

21

Context Switch

Thread main_thread;
Thread other_thread;

void other_func() {
 cout << "Howdy! I am another thread." << endl;
 context_switch(other_thread, main_thread);
 cout << "We will never reach this line :(" << endl;
}

int main(int argc, char *argv[]) {
 // Initialize other_thread to run other_func
 other_thread = create_thread(other_func);

 cout << "Hello, world! I am the main thread" << endl;
 context_switch(main_thread, other_thread);
 cout << "Cool, I'm back in main()!" << endl;
 return 0;
}

• context_switch is called
from one function, but
returns to another

• The next time we switch
back to the original
thread, it resumes where
it left off.

R0
R1

RN

……

Core

SP

A3 Stack

Hardware

Registers

Process A
Control Block

A2
A1

Threads

A3

thread
state

Context Switching

22

One more key detail: while we
could store all saved registers in
the PCB thread state space, instead
we can utilize the thread’s stack,
which will be unused while it is not
running. Store all registers (except
%rsp) there, and then store only
%rsp in thread state space!

Context Switching

23

R0
R1

RN

……

Core

SP

…

A3 Stack

Hardware

Registers

Process A
Control Block

A2
A1

Threads

A3

Saved

Registers

(all but SP)

thread
state

One more key detail: while we
could store all saved registers in
the PCB thread state space, instead
we can utilize the thread’s stack,
which will be unused while it is not
running. Store all registers (except
%rsp) there, and then store only
%rsp in thread state space!

Context Switching

24

R0
R1

RN

……

Core

SP

…

A3 Stack

Hardware

Registers

Process A
Control Block

A2
A1

Threads

SP

A3

thread
state

One more key detail: while we
could store all saved registers in
the PCB thread state space, instead
we can utilize the thread’s stack,
which will be unused while it is not
running. Store all registers (except
%rsp) there, and then store only
%rsp in thread state space!

Context Switching

25

R0
R1

RN

……

Core

SP

…

A3 Stack

Hardware

Registers

Process A
Control Block

A2
A1

Threads

SP

A3

thread
state

When we switch back later, we will
restore %rsp and then pop off all
the other saved register values.

26

Context Switching

A context switch means changing the thread currently running to another
thread. We must save the current thread state and load in the new thread state.

1. Push all registers besides stack onto current thread’s stack

2. Save the current stack register (rsp) into the thread’s state space

3. Load the other thread’s saved stack register from its state space into rsp

4. Pop registers off the other thread’s stack

Let’s see an example switching from thread A3 to another already-running
thread B1.

Super funky: we are calling a function from one
thread’s stack and execution and returning
from it in another thread’s stack and execution!

R0
R1

RN

……

Core

SP

A3 Stack

…

B1 Stack

Hardware

Registers

Process B
Control Block

B1

Threads

SP

Process A
Control Block

A2
A1

Threads

A3

thread
state

thread
state

Context Switching

Context

switch: how do

we switch from

thread A3 to

thread B1?
27

Context Switching

Step 1: push

all registers

besides

stack

register onto

the thread’s

stack. 28

R0
R1

RN

……

Core

SP

…

A3 Stack

…

B1 Stack

Hardware

Registers

Process A
Control Block

A2
A1

Threads

Process B
Control Block

B1

Threads

SP
A3

Saved

Registers

(all but SP)

thread
state

thread
state

Context Switching

Step 2: save

the stack

register into

the thread’s

state space.

29

R0
R1

RN

……

Core

SP

…

A3 Stack

…

B1 Stack

Hardware

Registers

Process A
Control Block

A2
A1

Threads

SP

Process B
Control Block

B1

Threads

SP
A3

thread
state

thread
state

Context Switching

Step 3: load

B1’s saved

stack

register from

its thread

state space.

30

R0
R1

RN

……

Core

SP

…

A3 Stack

…

B1 Stack

Hardware

Registers

Process A
Control Block

A2
A1

Threads

SP

Process B
Control Block

B1

Threads

SP
A3

thread
state

thread
state

Context Switching

Step 4: pop

B1’s other

registers

from its

stack space.

31

R0
R1

RN

……

Core

SP

…

A3 Stack B1 Stack

Hardware

Registers

A2
A1

Threads

SP

B1

Threads

A3

…

thread
state

thread
state

Process A
Control Block

Process B
Control Block

32

Context Switching

A context switch means changing the thread currently running to another
thread. We must save the current thread state and load in the new thread state.

1. Push all registers besides stack onto current thread’s stack

2. Save the current stack register (rsp) into the thread’s state space

3. Load the other thread’s saved stack register from its state space into rsp

4. Pop registers off the other thread’s stack

Super funky: we are calling a function from one
thread’s stack and execution and returning
from it in another thread’s stack and execution!

33

Context Switching

pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

34

Context Switching

pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

1. Push all registers besides stack
onto current thread’s stack

35

Context Switching

pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

2. Save the current stack register
(rsp) into the thread’s state space

36

Context Switching

pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

3. Load the other thread’s saved stack
register from its state space into rsp

37

Context Switching

pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

4. Pop registers off the other thread’s stack

38

Context Switching

pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

we start executing on one stack…

and end executing on another!

39

Plan For Today

• Overview: Dispatching and Scheduling

• Running a Thread

• Switching to Another Thread
• Context Switch Implementation

• How do we switch what code is running?

cp -r /afs/ir/class/cs111/lecture-code/lect17 .

40

How do we switch what code is
running?

It turns out information about what code to run is also stored in each thread’s
stack space, automatically! So by switching stacks, we switch code too.

Key Idea: whenever we call a function, before running that function we store
info on the stack about where we should resume in the calling function when
we are done. This is called the return address (“bookmark”). This includes
when we call context switch.

• The callq instruction (for calling a function) stores the return address

• The ret instruction pops the return address off the stack and resumes
executing that code (pops value off and into the %rip register)

41

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

42

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

Bkmk: Go back to addr X

43

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

Bkmk: Go back to addr X

Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

44

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

Bkmk: Go back to addr X

Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

45

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

Bkmk: Go back to addr X

Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

46

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr YBkmk: Go back to addr X

Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

47

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr YBkmk: Go back to addr X

Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

48

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr X

Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

49

Context Switching

pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

we start executing on one stack…

and end executing on another!

50

Context Switching

pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

We enter via a call from a
function in the current thread

We exit to a call from a function in the new thread!

51

Context Switch

Thread main_thread;
Thread other_thread;

void other_func() {
 cout << "Howdy! I am another thread." << endl;
 context_switch(other_thread, main_thread);
 cout << "We will never reach this line :(" << endl;
}

int main(int argc, char *argv[]) {
 // Initialize other_thread to run other_func
 other_thread = create_thread(other_func);

 cout << "Hello, world! I am the main thread" << endl;
 context_switch(main_thread, other_thread);
 cout << "Cool, I'm back in main()!" << endl;
 return 0;
}

• context_switch is called
from one function, but
returns to another

• The next time we switch
back to the original
thread, it resumes where
it left off.

52

Creating New Threads

Problem: when a thread runs for the first time, it won’t have a “freeze frame”.
How does context-switching to a new thread work?

• Key idea: when created, we give a thread a fake “saved state” that appears as
though it was frozen right before executing its first function.

• In other words; we put fake saved registers and a return address that,
when ret runs, will take us "back" to the specified function it should run.

53

Context Switch Practice

Thread main_thread;
Thread other_thread;

void other_func() {
 context_switch(other_thread, main_thread);
 cout << "D" << endl;
 context_switch(other_thread, main_thread);
 cout << "A" << endl;
}

int main(int argc, char *argv[]) {
 other_thread = create_thread(other_func);
 cout << "B" << endl;
 context_switch(main_thread, other_thread);
 cout << "C" << endl;
 context_switch(main_thread, other_thread);
 return 0;
}

What would be outputted by this
program? Key points:

• context_switch is called from one
function, but returns to another

• The next time we switch back to
the original thread, it resumes
where it left off.

• New thread starts with ”fake”
freeze frame

• These custom threads don’t run
unless we explicitly context
switch to them

Respond on PollEv:

pollev.com/cs111

54

55

Context Switch Practice

Thread main_thread;
Thread other_thread;

void other_func() {
 context_switch(other_thread, main_thread);
 cout << "D" << endl;
 context_switch(other_thread, main_thread);
 cout << "A" << endl;
}

int main(int argc, char *argv[]) {
 other_thread = create_thread(other_func);
 cout << "B" << endl;
 context_switch(main_thread, other_thread);
 cout << "C" << endl;
 context_switch(main_thread, other_thread);
 return 0;
}

What would be outputted by this
program? Key points:

• context_switch is called from one
function, but returns to another

• The next time we switch back to
the original thread, it resumes
where it left off.

• New thread starts with ”fake”
freeze frame

Answer: BCD

56

Recap

• Overview: Dispatching and
Scheduling

• Running a Thread

• Switching to Another Thread
• Context Switch Implementation

• How do we switch what code is
running?

Next time: how do we decide which
thread to run?

Lecture 17 takeaway: The OS

keeps a process control block

for each process and uses it to

context switch between threads.

To switch we must freeze frame

the existing register values and

load in new ones.

	Default Section
	Slide 1: CS111, Lecture 17 Dispatching
	Slide 2
	Slide 3: CS111 Topic 3: Multithreading
	Slide 4: CS111 Topic 3: Multithreading, Part 2
	Slide 5: Learning Goals
	Slide 6: Plan For Today
	Slide 7: Plan For Today
	Slide 8: Scheduling And Dispatching
	Slide 9: Plan For Today
	Slide 10: Running a Thread
	Slide 11: Regaining Control
	Slide 12: Plan For Today
	Slide 13: Switching to Another Thread
	Slide 14: Aside: x86-64 Assembly Refresher
	Slide 15: Process and Thread State
	Slide 16: Process and Thread State
	Slide 17: Thread State
	Slide 18: Switching Between Threads
	Slide 19: Demo: context-switch.cc
	Slide 20: Plan For Today
	Slide 21: Context Switch
	Slide 22: Context Switching
	Slide 23: Context Switching
	Slide 24: Context Switching
	Slide 25: Context Switching
	Slide 26: Context Switching
	Slide 27: Context Switching
	Slide 28: Context Switching
	Slide 29: Context Switching
	Slide 30: Context Switching
	Slide 31: Context Switching
	Slide 32: Context Switching
	Slide 33: Context Switching
	Slide 34: Context Switching
	Slide 35: Context Switching
	Slide 36: Context Switching
	Slide 37: Context Switching
	Slide 38: Context Switching
	Slide 39: Plan For Today
	Slide 40: How do we switch what code is running?
	Slide 41: Context Switching
	Slide 42: Context Switching
	Slide 43: Context Switching
	Slide 44: Context Switching
	Slide 45: Context Switching
	Slide 46: Context Switching
	Slide 47: Context Switching
	Slide 48: Context Switching
	Slide 49: Context Switching
	Slide 50: Context Switching
	Slide 51: Context Switch
	Slide 52: Creating New Threads
	Slide 53: Context Switch Practice
	Slide 54
	Slide 55: Context Switch Practice
	Slide 56: Recap

