
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under 
Creative Commons Attribution 2.5 License.  All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 18
Scheduling



2

CS111 Topic 3: Multithreading, Part 2

Dispatching Scheduling
Scheduling and 

Preemption

Implementing 
Locks and 
Condition 
Variables

Lecture 17 This Lecture Lecture 19

assign5: implement your own version of thread, mutex and 
condition_variable_any!

Lecture 20

Multithreading - How can we have concurrency within a single process? How 
does the operating system support this?



3

Learning Goals

• Explore the tradeoffs in deciding which threads get to run and for how long

• Learn about 4 different scheduling algorithms and their tradeoffs



4

Plan For Today

• Recap: Dispatching

• Scheduling and Thread States

• Approach #1: First-Come First-Serve

• Approach #2: Round Robin

• What makes a scheduling algorithm “good”?

• Approach #3: Shortest Remaining Processing Time

• Approach #4: Priority-Based Scheduling



5

Plan For Today

• Recap: Dispatching

• Scheduling and Thread States

• Approach #1: First-Come First-Serve

• Approach #2: Round Robin

• What makes a scheduling algorithm “good”?

• Approach #3: Shortest Remaining Processing Time

• Approach #4: Priority-Based Scheduling



6

Running and Switching Between 
Threads

• When we want to run a new thread, we “freeze frame” (save register values) 
the current running thread, save that, and load in the “freeze frame” of the 
thread we want to run.

• Mechanisms (Traps, Interrupts) to ensure OS eventually regains control.

• Thread state stored in Process Control Block (PCB) – saved %rsp

• Context switch is changing to run another thread.  It’s a function that, as part 
of its execution, returns to a different function in a different thread than it was 
called from.

• The context switch function pushes registers onto the current thread’s stack, 
saves its %rsp value to the thread state space, changes to the new thread’s 
%rsp value, and pops register values from its stack.



7

Context Switching

A context switch means changing the thread currently running to another 
thread.  We must save the current thread state and load in the new thread state.

1. Push all registers besides stack onto current thread’s stack

2. Save the current stack register (rsp) into the thread’s state space

3. Load the other thread’s saved stack register from its state space into rsp

4. Pop registers off the other thread’s stack

Super funky: we are calling a function from one 
thread’s stack and execution and returning 
from it in another thread’s stack and execution!



8

Context Switching

pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret



9

Context Switching

pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

we start executing on one stack…

and end executing on another!



10

Context Switching

pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

We enter via a call from a 
function in the current thread

We exit to a call from a function in the new thread!



11

How do we switch what code is 
running?

It turns out information about what code to run is also stored in each thread’s 
stack space, automatically!  So by switching stacks, we switch code too.

Key Idea: whenever we call a function, before running that function we store 
info on the stack about where we should resume in the calling function when 
we are done.  This is called the return address (“bookmark”).  This includes 
when we call context switch.

• The callq instruction (for calling a function) stores the return address

• The ret instruction pops the return address off the stack and resumes 
executing that code (pops value off and into the %rip register)



12

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15



13

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

Bkmk: Go back to addr X



14

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

Bkmk: Go back to addr X

Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15



15

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

Bkmk: Go back to addr X

Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15



16

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr Y
Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15

Bkmk: Go back to addr X

Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15



17

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr YBkmk: Go back to addr X

Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15



18

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr YBkmk: Go back to addr X

Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15



19

Context Switching

callq context_switch
...
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

…

%rsp

Thread A’s Stack

…

Thread B’s Stack

Bkmk: Go back to addr X

Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %r14

Saved %r15



20

Creating New Threads

Problem: when a thread runs for the first time, it won’t have a “freeze frame”.  
How does context-switching to a new thread work?

• Key idea: when created, we give a thread a fake “saved state” that appears as 
though it was frozen right before executing its first function.

• In other words; we put fake saved registers and a return address that, 
when ret runs, will take us "back" to the specified function it should run.



21

Plan For Today

• Recap: Dispatching

• Scheduling and Thread States

• Approach #1: First-Come First-Serve

• Approach #2: Round Robin

• What makes a scheduling algorithm “good”?

• Approach #3: Shortest Remaining Processing Time

• Approach #4: Priority-Based Scheduling



22

Tracking All Threads

How does the OS track/remember all user threads on the system?

Key idea: at any given time, a thread is in one of three states:

1. Running

2. Blocked – waiting for an event (disk I/O, network connection, etc.)

3. Ready – able to run, but waiting for CPU time



23

Thread States

Running

Ready Blocked



24

Thread States

Running

Ready Blocked

When a thread is created, 

it starts out ready.



25

Thread States

Running

Ready Blocked

When the OS lets a 

thread run on a core, the 

thread goes to running.



26

Thread States

Running

Ready Blocked

If the thread can still run 

but the OS needs to run 

another thread, the thread 

is taken off the core and 

goes back to ready.



27

Thread States

Running

Ready Blocked

Maybe a thread is running 

and reaches a point 

where it can’t run 

anymore (eg. waiting for 

file contents from disk).  

The thread will go to 

blocked.



28

Thread States

Running

Ready Blocked

Maybe a thread is running 

and reaches a point 

where it can’t run 

anymore (eg. waiting for 

file contents from disk).  

The thread will go to 

blocked.



29

Thread States

Running

Ready Blocked

If the event the thread is 

waiting for happens, and 

a core is immediately 

available for it, it switches 

back to running.



30

Thread States

Running

Ready Blocked

If the event the thread is 

waiting for happens, but 

the thread can’t run yet, it 

switches to ready.



31

Thread States

Running

Ready Blocked

It’s not possible to go 

from ready to blocked, 

because in order for a 

thread to become blocked 

it must do work that tells it 

it must wait for 

something.



32

Thread States

Running

Ready Blocked

Key question: if we have 

many ready threads, how 

do we decide who to run 

next, and for how long?



33

Plan For Today

• Recap: Dispatching

• Scheduling and Thread States

• Approach #1: First-Come First-Serve

• Approach #2: Round Robin

• What makes a scheduling algorithm “good”?

• Approach #3: Shortest Remaining Processing Time

• Approach #4: Priority-Based Scheduling



34

First-come-first-serve

Key Question: How does the operating system decide which thread to run next? 
(e.g. many ready threads).  Assume just 1 core.

One idea - “first-come-first-serve”: keep all ready threads in a ready queue.  
Add threads to the back.  Run the first thread on the queue until it exits or 
blocks (no timer).

Problem: thread could run away with core and run forever!



35

Plan For Today

• Recap: Dispatching

• Scheduling and Thread States

• Approach #1: First-Come First-Serve

• Approach #2: Round Robin

• What makes a scheduling algorithm “good”?

• Approach #3: Shortest Remaining Processing Time

• Approach #4: Priority-Based Scheduling



36

Round Robin

Problem: thread could run away with core and run forever!

Solution: define a time slice, the max run time without a context switch (e.g. 
10ms).

Idea: round robin scheduling – run thread for one time slice, then put at back of 
ready queue. (you’ll use this on assign5)

Question: what’s a good time slice?

Thought: we want to run many threads in the amount of time for human 
response time, so e.g. keystroke seems instantaneous.  So why not make the 
time slice microscopically small?



37

Round Robin

Idea: round robin scheduling – run thread for one time slice, then put at back of 
ready queue. (you’ll use this on assign5)

Question: what’s a good time slice?   Why not make it microscopically small?

If too small, context switch costs are very high, waste cores

Why not make it very large?

If too large, slow response, threads can monopolize cores

Try to balance: usually in 5-10ms range, Linux is 4ms



38

Plan For Today

• Recap: Dispatching

• Scheduling and Thread States

• Approach #1: First-Come First-Serve

• Approach #2: Round Robin

• What makes a scheduling algorithm “good”?

• Approach #3: Shortest Remaining Processing Time

• Approach #4: Priority-Based Scheduling



39

Scheduling Algorithms

How do we decide whether a scheduling algorithm is good?

• Minimize response time (time to useful result)
• e.g. keystroke -> key appearing, or “make” -> program compiled

• Assume useful result is when the thread blocks or completes

• Use resources efficiently
• keep cores + disks busy

• low overhead (minimize context switches)

• Fairness (e.g. with many users, or even many jobs for one user)



40

Comparing FCFS/RR: Scenario 1

B CA

time 100 101 103

FIFO
Avg:

101.3

A

100ms

B

1ms

C

2ms

Ready Queue

A

time 2 5 103

Round Robin
Avg:

36.7
B C A C A

Is RR always 

better than FCFS?
Completion 

timestamp



41

Comparing FCFS/RR: Scenario 2

A

10ms

B

10ms

C

10ms

Ready Queue

B CA

time 10 20 30

FIFO
Avg:

20

A

time 28 29 30

Round Robin
Avg:

29
B C A B C A B CA B C...

Completion 

timestamp



42

What’s the optimal 
approach if we want to 

minimize average 
response time? 



43

Plan For Today

• Recap: Dispatching

• Scheduling and Thread States

• Approach #1: First-Come First-Serve

• Approach #2: Round Robin

• What makes a scheduling algorithm “good”?

• Approach #3: Shortest Remaining Processing Time

• Approach #4: Priority-Based Scheduling



44

Shortest Remaining Processing Time

What would it look like if we optimized for completion time?  (time to finish, or 
time to block).

Idea - SRPT: pick the thread that will finish the most quickly and run it to 
completion.  This is the optimal solution for minimizing average response time.



45

Evaluating SRPT

B CA

time 100 101 103

FIFO
Avg:

101.3

A

100ms

B

1ms

C

2ms

Ready Queue

A

time 2 5 103

Round Robin
Avg:

36.7
B C A C A

B C A

1 3

SRPT
Avg:

35.7

Completion 

timestamp



46

Evaluating SRPT

A

10ms

B

10ms

C

10ms

B CA

time 10 20 30

FIFO
Avg:

20

A

time 28 29 30

Round Robin
Avg:

29
B C A B C A B CA B C...

time

SRPT
Avg:

20
B CA

10 20

Ready Queue

Completion 

timestamp



47

Shortest Remaining Processing Time

SRPT: pick the thread that will finish the most quickly and run it to completion.  
This is the optimal solution for minimizing average response time.

What are some problems/challenges with the SRPT approach?

Respond on PollEv: 

pollev.com/cs111



48



49

Shortest Remaining Processing Time

SRPT: pick the thread that will finish the most quickly and run it to completion.  
This is the optimal solution for minimizing average response time.

What are some problems/challenges with the SRPT approach?

Problem #1: how do we know which one will finish most quickly? (we must be 
able to predict the future…)

Problem #2: if we have many short-running threads and one long-running one, 
the long one will not get to run



50

SRPT

Another advantage of SRPT: improves overall resource utilization

• If a thread is I/O-Bound – e.g. constantly reading from disk (frequently waits 
for disk), it will get priority vs. thread that needs lots of CPU time – CPU 
Bound.

• “I/O-Bound” - the time to complete them is dictated by how long it takes for some 
external mechanism to complete its work (disk, network)

• “CPU-Bound” - the time to complete them is dictated by how long it takes us to do the 
CPU computation

• E.g. with I/O-bound thread wanting 1ms before reading from disk vs. CPU-bound thread 
wanting 100ms, we will run I/O bound thread first.

Gives preference to those who need the least.

Problem: how can we get close to SRPT but without having to predict the 
future or neglect certain threads?



51

Priority-Based Scheduling

Goal: we want to get close to SRPT, but without having to predict the future, and 
without neglecting certain threads.

Key Idea: can use past performance to predict future performance.

• Behavior tends to be consistent

• If a thread runs for a long time without blocking, it’s likely to continue running



52

Plan For Today

• Recap: Dispatching

• Scheduling and Thread States

• Approach #1: First-Come First-Serve

• Approach #2: Round Robin

• What makes a scheduling algorithm “good”?

• Approach #3: Shortest Remaining Processing Time

• Approach #4: Priority-Based Scheduling



53

Priority-Based Scheduling

Goal: we want to get close to SRPT, but without having to predict the future, and 
without neglecting certain threads.

Idea: let’s make threads have priorities that adjust over time as they run.  We’ll 
have 1 ready queue for each priority, and always run highest-priority threads.

• Overall idea: threads that aren't using much CPU time stay in the higher-
priority queues, threads that are migrate to lower-priority queues.

• After blocking, thread starts in highest priority queue

• If a thread reaches the end of its time slice without blocking it moves to the 
next lower queue.

Problem: could still neglect long-running threads!



54

Priority-Based Scheduling

Idea: let’s make threads have priorities that adjust over time as they run.  We’ll 
have 1 ready queue for each priority, and always run highest-priority threads.

Problem: could still neglect long-running threads!

Alternate approach: let’s keep track of recent CPU usage per thread.  If a thread 
hasn’t run in a long time, its priority goes up.  And if it has run a lot recently, 
priority goes down.  (4.4 BSD Unix used this, ideas carried forward)

• No more neglecting threads: a thread that hasn’t run in a long time will get its 
priority increased

• If there are many equally-long threads that want to run, the priorities even out 
over time, at a kind of “equilibrium”



55

Scheduling

Key Question: How does the operating system decide which thread to run next? 
(e.g. many ready threads).  Assume just 1 core.

We discussed 4 main designs:

1. First-come-first-serve (FIFO / FCFS): keep threads in ready queue, add 
threads to the back, run thread from front until completion or blocking.

2. Round Robin: run thread for one time slice, then add to back of queue if 
wants more time

3. Shortest Remaining Processing Time (SRPT): pick the thread that will 
complete or block the soonest and run it to completion.

4. Priority-Based Scheduling: threads have priorities, and we have one ready 
queue per priority.  Threads adjust priorities based on time slice usage, or 
based on recent CPU usage (4.4 BSD Unix)



56

Recap

• Recap: Dispatching

• Scheduling and Thread States

• Approach #1: First-Come First-Serve

• Approach #2: Round Robin

• What makes a scheduling algorithm 
“good”?

• Approach #3: Shortest Remaining 
Processing Time

• Approach #4: Priority-Based Scheduling

Next time: preemption

Lecture 18 takeaway: For 

scheduling, we want to 

minimize response time, use 

resources efficiently, and be 

fair.  SRPT is the best to 

minimize average response 

time, but we can only 

approximate it due to needing 

to predict the future.


	Default Section
	Slide 1: CS111, Lecture 18 Scheduling
	Slide 2: CS111 Topic 3: Multithreading, Part 2
	Slide 3: Learning Goals
	Slide 4: Plan For Today
	Slide 5: Plan For Today
	Slide 6: Running and Switching Between Threads
	Slide 7: Context Switching
	Slide 8: Context Switching
	Slide 9: Context Switching
	Slide 10: Context Switching
	Slide 11: How do we switch what code is running?
	Slide 12: Context Switching
	Slide 13: Context Switching
	Slide 14: Context Switching
	Slide 15: Context Switching
	Slide 16: Context Switching
	Slide 17: Context Switching
	Slide 18: Context Switching
	Slide 19: Context Switching
	Slide 20: Creating New Threads
	Slide 21: Plan For Today
	Slide 22: Tracking All Threads
	Slide 23: Thread States
	Slide 24: Thread States
	Slide 25: Thread States
	Slide 26: Thread States
	Slide 27: Thread States
	Slide 28: Thread States
	Slide 29: Thread States
	Slide 30: Thread States
	Slide 31: Thread States
	Slide 32: Thread States
	Slide 33: Plan For Today
	Slide 34: First-come-first-serve
	Slide 35: Plan For Today
	Slide 36: Round Robin
	Slide 37: Round Robin
	Slide 38: Plan For Today
	Slide 39: Scheduling Algorithms
	Slide 40: Comparing FCFS/RR: Scenario 1
	Slide 41: Comparing FCFS/RR: Scenario 2
	Slide 42: What’s the optimal approach if we want to minimize average response time? 
	Slide 43: Plan For Today
	Slide 44: Shortest Remaining Processing Time
	Slide 45: Evaluating SRPT
	Slide 46: Evaluating SRPT
	Slide 47: Shortest Remaining Processing Time
	Slide 48
	Slide 49: Shortest Remaining Processing Time
	Slide 50: SRPT
	Slide 51: Priority-Based Scheduling
	Slide 52: Plan For Today
	Slide 53: Priority-Based Scheduling
	Slide 54: Priority-Based Scheduling
	Slide 55: Scheduling
	Slide 56: Recap


