CS111, Lecture 18
Scheduling

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others. 1

CS111 Topic 3: Multithreading, Part 2

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

Implementing

Scheduling Scheduling and Locks and

Dispatching

»

»

Preemption Condition
Variables

Lecture 17 This Lecture Lecture 19 Lecture 20

assign5: implement your own version of thread, mutex and
condition_variable _any!

Learning Goals

* Explore the tradeoffs in deciding which threads get to run and for how long
* Learn about 4 different scheduling algorithms and their tradeoffs

Plan For Today

* Recap: Dispatching

* Scheduling and Thread States

e Approach #1: First-Come First-Serve

e Approach #2: Round Robin

* What makes a scheduling algorithm “good”?

e Approach #3: Shortest Remaining Processing Time
* Approach #4: Priority-Based Scheduling

Plan For Today

* Recap: Dispatching

Running and Switching Between

Threads

* When we want to run a new thread, we “freeze frame” (save register values)
the current running thread, save that, and load in the “freeze frame” of the
thread we want to run.

* Mechanisms (Traps, Interrupts) to ensure OS eventually regains control.
* Thread state stored in Process Control Block (PCB) — saved %rsp

* Context switch is changing to run another thread. It’s a function that, as part
of its execution, returns to a different function in a different thread than it was
called from.

* The context switch function pushes registers onto the current thread’s stack,
saves its %rsp value to the thread state space, changes to the new thread’s
%rsp value, and pops register values from its stack.

Context Switching

A context switch means changing the thread currently running to another
thread. We must save the current thread state and load in the new thread state.

= wnN

Push all registers besides stack onto current thread’s stack

Save the current stack register (rsp) into the thread’s state space

Load the other thread’s saved stack register from its state space into rsp
Pop registers off the other thread’s stack

Super funky: we are calling a function from one
thread’s stack and execution and returning
from it in another thread’s stack and execution!

pushq
pushg
pushq
pushg
pushq
pushg

mov(
mov(q
pPOp(q
pop(q
popq
pop(q
POp(
pop(q
ret

%rbp
%rbx
%rl2
%rl3
%rld
%rl5

Context Switching

%rsp,0x2000(%rdi)
Ox2000 (%rsi) ,%rsp

%r1l5
%rld
%rl3
%rl2
%rbx
%rbp

Context Switching

pushg %rbp
pushqg %rbx
pushq %rl2
pushqg %ril13
pushq %rl4
pushqg %ril15
movq %rsp,0x2000(%rdi)
movq ©x2000(%rsi),%srsp

we start executing on one stack...

POP(
pPOp(
POP(
POpP(
POP(
pPOp(
ret

%rl5
%rl4
%rl3
%rl2
%rbx
%rbp

and end executing on another!

Context Switching

pushq %rbp = We enter via a call from a

Bﬂiﬂg 7;5”2(function in the current thread

pushqg %ril3
pushq %rl4
pushqg %ril15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%srsp

popqg
popqg
popqg
popqg
popqg
popqg

%rl5
%rld
%rl3
%rl2
%rbx
%rbp

"€t —— We exit to a call from a function in the new thread!

10

How do we switch what code is

It turns out information about what code to run is also stored in each thread’s
stack space, automatically! So by switching stacks, we switch code too.

Key Idea: whenever we call a function, before running that function we store
info on the stack about where we should resume in the calling function when
we are done. This is called the return address (“bookmark”). This includes
when we call context switch.

* The callq instruction (for calling a function) stores the return address

* The ret instruction pops the return address off the stack and resumes
executing that code (pops value off and into the %rip register)

11

Context Switching

Thread A’'s Stack

Thread B’s Stack

Bkmk: Go back to addr Y

%rsp

Saved %rbp

Saved %rbx

Saved %rl12

Saved %r13

Saved %rl14

Saved %rl15

|

callg
pushq
pushg
pushq
pushg
pushq
pushg
mov(
mov(
POPC
POPC
popq
POpAq
POopq

Pop(q
ret

context switch

%rbp

%rbx

%rl2

%rl3

%rld

%15
%rsp,0x2000(%rdi)
0x2000(%rsi) ,srsp
%r1l5

%rld

%rl3

%rl2

%6rbx

%rbp

12

Context Switching

Thread A’'s Stack

Bkmk: Go back to addr X

Thread B’s Stack

Bkmk: Go back to addr Y

Saved %rbp

Saved %rbx

Saved %rl12

Saved %r13

Saved %rl14

Saved %rl15

|

callg
pushq
pushg
pushq
pushg
pushq
pushg
mov(
mov(
POPC
POPC
popq
POpAq
POopq

Pop(q
ret

context switch

%rbp

%rbx

%rl2

%rl3

%rld

%15
%rsp,0x2000(%rdi)
0x2000(%rsi) ,srsp
%r1l5

%rld

%rl3

%rl2

%6rbx

%rbp

13

Context Switching

Thread A’'s Stack

Thread B’s Stack

Bkmk: Go back to addr X

Bkmk: Go back to addr Y

Saved %rbp

Saved %rbp

Saved %rbx

Saved %rbx

Saved %r12

Saved %rl12

Saved %r13

Saved %rl14

Saved %r13

Saved %rl15

Saved %rl14

Saved %rl15

|

callg
pushq
pushq
pushq
pushg
pushq
pushg
movg
movg
pPopq
popq
pPopq
popq
popq

Pop(q
ret

context switch

%rbp

%rbx

%rl2

%rl3

%rld

%rl5
%rsp,0x2000(%rdi)
0x2000(%rsi) ,srsp
%r1l5

%rld

%rl3

%rl2

%6rbx

%rbp

14

Context Switching

callg context switch

Thread A's Stack Thread B’s Stack

pushqg %rbp

|
pushqg %rbx
Bkmk: Go back ddr X Bkmk: Go back ddrY pUShq 6r12
mk: Go back to addr mk: Go ac0 to addr pushq %pr13
Saved %rbp Saved %rbp o
Saved %rbx Saved %rbx pUShq %rld
Saved %r12 Saved %r12 pus hq %15
Saved %r13 Saved %r13 movg %rsp)@xZ@@@(%r\di)
(o) [0) °
Saved %r14 Saved %rl14 movg OX2000 (%PSl) , °/or‘Sp
Saved %r15 Saved %r15

popq %ril5

|

pPop(q
POpP(
pPop(q
popq
pPoOp(
ret

%rld
%rl3
%rl2
%rbx
%rbp

15

Context Switching

Thread A’'s Stack

Thread B’s Stack

Bkmk: Go back to addr X

Bkmk: Go back to addr Y

Saved %rbp

Saved %rbp

Saved %rbx

Saved %rbx

Saved %r12

Saved %rl12

Saved %r13

Saved %rl14

Saved %r13

Saved %rl15

|

Saved %rl14

Saved %rl15

callg
pushq
pushg
pushq
pushg
pushq
pushg
mov(
mov(
POPC
POPC
POPC
POpAq
POopq

Pop(q
ret

context switch

%rbp

%rbx

%rl2

%rl3

%rld

%15
%rsp,0x2000(%rdi)
Ox2000(%rsi) ,srsp
%r1l5

%rl4

%rl3

%rl2

%6rbx

%rbp

16

Context Switching

Thread A’'s Stack
I

Bkmk: Go back to addr X
Saved %rbp
Saved %rbx
Saved %r12
Saved %r13
Saved %r14

Saved %rl15

|

Thread B’s Stack

Bkmk: Go back to addr Y

callg
pushq
pushg
pushq
pushg
pushq
pushg
mov(
mov(
POPC
POPC
POPC
POp(q
POPC

Pop(q
ret

context switch

%rbp

%rbx

%rl2

%rl3

%rld

%15
%rsp,0x2000(%rdi)
0x2000(%rsi) ,srsp
%rl5

%rld

%rl3

%rl2

%6rbx

%rbp

17

Context Switching

Thread A’'s Stack
I

Bkmk: Go back to addr X
Saved %rbp

Saved %rbx
Saved %r12

Saved %r13
Saved %rl14

Saved %rl15

|

Thread B’s Stack

Bkmk: Go back to addr Y

callg
pushq
pushg
pushq
pushg
pushq
pushg
mov(
mov(
POPC
POPC
popq
POpAq
POopq

Pop(q
ret

context switch

%rbp

%rbx

%rl2

%rl3

%rld

%15
%rsp,0x2000(%rdi)
0x2000(%rsi) ,srsp
%r1l5

%rld

%rl3

%rl2

%6rbx

%rbp

18

Context Switching

callg context switch

Thread A’'s Stack
I

Thread B’s Stack

pushqg %rbp
pushqg %rbx
pushg %rl2
pushqg %ril3
pushq %rl4
pushqg %rl5
movq %rsp,0x2000(%rdi)
movqg 0x2000(%rsi),%rsp

Bkmk: Go back to addr X
Saved %rbp
Saved %rbx
Saved %r12
Saved %r13
Saved %r14

%rsp

Saved %rl15

|

POp(
pPop(q
popq
pPop(q
popq
pPoOp(
ret

%rl5
%rld
%rl3
%rl2
%rbx
%rbp

19

Creating New Threads

Problem: when a thread runs for the first time, it won’t have a “freeze frame”.
How does context-switching to a new thread work?

* Key idea: when created, we give a thread a fake “saved state” that appears as
though it was frozen right before executing its first function.

* In other words; we put fake saved registers and a return address that,
when ret runs, will take us "back" to the specified function it should run.

20

Plan For Today

* Scheduling and Thread States

21

Tracking All Threads

How does the OS track/remember all user threads on the system?

Key idea: at any given time, a thread is in one of three states:

1. Running
2. Blocked — waiting for an event (disk 1/0O, network connection, etc.)

3. Ready — able to run, but waiting for CPU time

22

Thread States

y |
" 4 \'
o §

Thread States

When a thread is created,
It starts out ready.

24

Thread States

When the OS lets a :
thread run on a core, the Ru NNl ng

thread goes to running.

25

Thread States

If the thread can still run
but the OS needs to run
another thread, the thread
IS taken off the core and .

goes back to ready.

26

Maybe a thread is running
and reaches a point
where it can’t run
anymore (eg. waiting for
file contents from disk).
The thread will go to
blocked.

Thread States

Running

27

Maybe a thread is running
and reaches a point
where it can’t run
anymore (eg. waiting for
file contents from disk).
The thread will go to
blocked.

Thread States

N Blocked

28

Thread States

If the event the thread is
waiting for happens, and Runni Ng
a core is immediately

available for it, it switches
back to running.

29

Thread States

If the event the thread is
waiting for happens, but
the thread can’t run yet, it
switches to ready. .

30

Thread States

It's not possible to go
from ready to blocked,
because In order for a
thread to become blocked .
It must do work that tells it
It must wait for
something. \

31

Thread States
Key question: if we have
many ready threads, how Runni Ng
do we decide who to run

next, and for how long?
" 4 \-
Ready E Blocked

32

Plan For Today

* Approach #1: First-Come First-Serve

33

First-come-first-serve

Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.

One idea - “first-come-first-serve”: keep all ready threads in a ready queue.
Add threads to the back. Run the first thread on the queue until it exits or
blocks (no timer).

Problem: thread could run away with core and run forever!

34

Plan For Today

e Approach #2: Round Robin

35

Round Robin

Problem: thread could run away with core and run forever!

Solution: define a time slice, the max run time without a context switch (e.g.
10ms).

Idea: round robin scheduling — run thread for one time slice, then put at back of
ready queue. (you’ll use this on assign5)

Question: what’s a good time slice?

Thought: we want to run many threads in the amount of time for human
response time, so e.g. keystroke seems instantaneous. So why not make the
time slice microscopically small?

36

Round Robin

Idea: round robin scheduling — run thread for one time slice, then put at back of
ready queue. (you’ll use this on assign5)

Question: what’s a good time slice? Why not make it microscopically small?

If too small, context switch costs are very high, waste cores

Why not make it very large?
If too large, slow response, threads can monopolize cores

Try to balance: usually in 5-10ms range, Linux is 4ms

37

Plan For Today

 What makes a scheduling algorithm “good”?

38

Scheduling Algorithms

How do we decide whether a scheduling algorithm is good?

* Minimize response time (time to useful result)
» e.g. keystroke -> key appearing, or “make” -> program compiled
* Assume useful resultis when the thread blocks or completes

e Use resources efficiently

* keep cores + disks busy
* low overhead (minimize context switches)

* Fairness (e.g. with many users, or even many jobs for one user)

39

Comparing FCFS/RR: Scenario 1

Is RR always Ready Queue
better than FCFS? c B A > o
2ms 1ms | 100ms ompletion
timestamp
FIFO
AvgQ:
: ® c 101.3
time 100101 103
Round Robin
AvgQ:
A|lB|C|A|C A Vg

o
time 2 5 103

40

Comparing FCFS/RR: Scenario 2

Ready Queue

- ° ‘ C let
10ms | 10ms | 10ms ompletion
timestamp
FIFO
AvgQ:
: ° © 20
-
time 10 20 30
Round Robin
A|lB|[C|A|B|C ABCABCA;/S-

_
time 28 29 30

41

What's the optimal
approach if we want to
minimize average
response time?

Plan For Today

* Approach #3: Shortest Remaining Processing Time

43

Shortest Remaining Processing Time

What would it look like if we optimized for completion time? (time to finish, or
time to block).

Idea - SRPT: pick the thread that will finish the most quickly and run it to
completion. This is the optimal solution for minimizing average response time.

44

Evaluating SRPT

Ready Queue

C B A Completion
2ms 1ms | 100ms timestamp
FIFO
Avg:
A B c 101.3
.
time 100101 103
Round Robin
Avg:
A| B |C]|A|C A 26 7
e
time 2 5 103
SRPT
AvgQ:
° © A 35.7

Evaluating SRPT

Ready Queue

C B A Completion
10ms | 10ms | 10ms timestamp
FIFO
Avg:
A ° © 20
o
time 10 20 30
Round Robin
AlB|C|A|B]|C AlB|lclalB|lc| A9
29
e
time 28 29 30
SRPT
AvgQ:
A i c 20

time 10 20 46

Shortest Remaining Processing Time

SRPT: pick the thread that will finish the most quickly and run it to completion.
This is the optimal solution for minimizing average response time.

What are some problems/challenges with the SRPT approach?

Respond on PolIEV: gk
pollev.com/cs111 £

47

What are some problems/challenges with the SRPT approach?

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Shortest Remaining Processing Time

SRPT: pick the thread that will finish the most quickly and run it to completion.
This is the optimal solution for minimizing average response time.

What are some problems/challenges with the SRPT approach?

Problem #1: how do we know which one will finish most quickly? (we must be
able to predict the future...)

Problem #2: if we have many short-running threads and one long-running one,
the long one will not get to run

49

SRPT

Another advantage of SRPT: improves overall resource utilization

* If a thread is I/O-Bound — e.g. constantly reading from disk (frequently waits
for disk), it will get priority vs. thread that needs lots of CPU time — CPU
Bound.

* “|/O-Bound” - the time to complete them is dictated by how long it takes for some
external mechanism to complete its work (disk, network)

* “CPU-Bound” - the time to complete them is dictated by how long it takes us to do the
CPU computation

e E.g. with I/O-bound thread wanting 1ms before reading from disk vs. CPU-bound thread
wanting 100ms, we will run 1/0 bound thread first.

Gives preference to those who need the least.

Problem: how can we get close to SRPT but without having to predict the
future or neglect certain threads?

50

Priority-Based Scheduling

Goal: we want to get close to SRPT, but without having to predict the future, and
without neglecting certain threads.

Key Idea: can use past performance to predict future performance.

e Behavior tends to be consistent

* If a thread runs for a long time without blocking, it’s likely to continue running

51

Plan For Today

* Approach #4: Priority-Based Scheduling

52

Priority-Based Scheduling

Goal: we want to get close to SRPT, but without having to predict the future, and
without neglecting certain threads.

Idea: let’s make threads have priorities that adjust over time as they run. We’'ll
have 1 ready queue for each priority, and always run highest-priority threads.

e Overall idea: threads that aren't using much CPU time stay in the higher-
priority queues, threads that are migrate to lower-priority queues.

* After blocking, thread starts in highest priority queue

* If a thread reaches the end of its time slice without blocking it moves to the
next lower queue.

Problem: could still neglect long-running threads!

53

Priority-Based Scheduling

Idea: let’s make threads have priorities that adjust over time as they run. We’'ll
have 1 ready queue for each priority, and always run highest-priority threads.

Problem: could still neglect long-running threads!

Alternate approach: let’s keep track of recent CPU usage per thread. If a thread
hasn’t run in a long time, its priority goes up. And if it has run a lot recently,
priority goes down. (4.4 BSD Unix used this, ideas carried forward)

* No more neglecting threads: a thread that hasn’t run in a long time will get its
priority increased

* If there are many equally-long threads that want to run, the priorities even out
over time, at a kind of “equilibrium”

54

Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.

We discussed 4 main designs:

1.

First-come-first-serve (FIFO / FCFS): keep threads in ready queue, add
threads to the back, run thread from front until completion or blocking.

Round Robin: run thread for one time slice, then add to back of queue if
wants more time

Shortest Remaining Processing Time (SRPT): pick the thread that will
complete or block the soonest and run it to completion.

Priority-Based Scheduling: threads have priorities, and we have one ready
gueue per priority. Threads adjust priorities based on time slice usage, or

based on recent CPU usage (4.4 BSD Unix)

55

* Recap: Dispatching Lecture 18 takeaway: For

* Scheduling and Thread States scheduling, we want to

* Approach #1: First-Come First-Serve minimize response time, use

* Approach #2: Round Robin resources efficiently, and be

» What makes a scheduling algorithm fair. SRPT Is the best to
“good”? minimize average response

* Approach #3: Shortest Remaining time, but we can only
Processing Time approximate it due to needing

* Approach #4: Priority-Based Scheduling to predict the future

Next time: preemption

56

	Default Section
	Slide 1: CS111, Lecture 18 Scheduling
	Slide 2: CS111 Topic 3: Multithreading, Part 2
	Slide 3: Learning Goals
	Slide 4: Plan For Today
	Slide 5: Plan For Today
	Slide 6: Running and Switching Between Threads
	Slide 7: Context Switching
	Slide 8: Context Switching
	Slide 9: Context Switching
	Slide 10: Context Switching
	Slide 11: How do we switch what code is running?
	Slide 12: Context Switching
	Slide 13: Context Switching
	Slide 14: Context Switching
	Slide 15: Context Switching
	Slide 16: Context Switching
	Slide 17: Context Switching
	Slide 18: Context Switching
	Slide 19: Context Switching
	Slide 20: Creating New Threads
	Slide 21: Plan For Today
	Slide 22: Tracking All Threads
	Slide 23: Thread States
	Slide 24: Thread States
	Slide 25: Thread States
	Slide 26: Thread States
	Slide 27: Thread States
	Slide 28: Thread States
	Slide 29: Thread States
	Slide 30: Thread States
	Slide 31: Thread States
	Slide 32: Thread States
	Slide 33: Plan For Today
	Slide 34: First-come-first-serve
	Slide 35: Plan For Today
	Slide 36: Round Robin
	Slide 37: Round Robin
	Slide 38: Plan For Today
	Slide 39: Scheduling Algorithms
	Slide 40: Comparing FCFS/RR: Scenario 1
	Slide 41: Comparing FCFS/RR: Scenario 2
	Slide 42: What’s the optimal approach if we want to minimize average response time?
	Slide 43: Plan For Today
	Slide 44: Shortest Remaining Processing Time
	Slide 45: Evaluating SRPT
	Slide 46: Evaluating SRPT
	Slide 47: Shortest Remaining Processing Time
	Slide 48
	Slide 49: Shortest Remaining Processing Time
	Slide 50: SRPT
	Slide 51: Priority-Based Scheduling
	Slide 52: Plan For Today
	Slide 53: Priority-Based Scheduling
	Slide 54: Priority-Based Scheduling
	Slide 55: Scheduling
	Slide 56: Recap

