CS111, Lecture 19

Preemption and Implementing Locks

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared, 1
uploaded, or distributed. (without expressed written permission)

CS111 Topic 3: Multithreading, Part 2

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

Implementing
Locks and

Preemption
and

Dispatching Scheduling

»

»

Condition
Variables

Implementing
Locks

Lecture 17 Lecture 18 This Lecture Lecture 20

assign5: implement your own version of thread, mutex and condition_variable!

Learning Goals

e Learn about the assign5 infrastructure and how to implement a
dispatcher/scheduler with preemption

* Understand more about how interrupts work and how they can cause race
conditions

* Use our understanding of threads and interrupts to implement locks

Plan For Today

* Recap: Scheduling
* Preemption and Interrupts
* Implementing Locks

cp -r /afs/ir/class/csl11l/lecture-code/lect19 . 4

Plan For Today

* Recap: Scheduling

cp -r /afs/ir/class/csl11l/lecture-code/lect19 . 5

Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.

We discussed 4 main designs:

1.

First-come-first-serve (FIFO / FCFS): keep threads in ready queue, add
threads to the back, run thread from front until completion or blocking.

Round Robin: run thread for one time slice, then add to back of queue if
wants more time

Shortest Remaining Processing Time (SRPT): pick the thread that will
complete or block the soonest and run it to completion.

Priority-Based Scheduling: threads have priorities, and we have one ready
gueue per priority. Threads adjust priorities based on time slice usage, or

based on recent CPU usage (4.4 BSD Unix)

Shortest Remaining Processing Time

SRPT: pick the thread that will finish the most quickly and run it to completion.
This is the optimal solution for minimizing average response time.

What are some problems/challenges with the SRPT approach?

Problem #1: how do we know which one will finish most quickly? (we must be
able to predict the future...)

Problem #2: if we have many short-running threads and one long-running one,
the long one will not get to run

SRPT

Another advantage of SRPT: improves overall resource utilization

* If a thread is I/O-Bound — e.g. constantly reading from disk (frequently waits
for disk), it will get priority vs. thread that needs lots of CPU time — CPU
Bound.

* “|/O-Bound” - the time to complete them is dictated by how long it takes for some
external mechanism to complete its work (disk, network)

* “CPU-Bound” - the time to complete them is dictated by how long it takes us to do the
CPU computation

e E.g. with I/O-bound thread wanting 1ms before reading from disk vs. CPU-bound thread
wanting 100ms, we will run 1/0 bound thread first.

Gives preference to those who need the least.

Plan For Today

* Preemption and Interrupts

cp -r /afs/ir/class/csl11l/lecture-code/lect19 . 9

Preemption and Interrupts

On assign5, you’ll implement a combined scheduler+dispatcher using the
Round Robin approach.

* Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run
code every X microseconds.

* Fires a timer interrupt at specified interval

Idea: we can use the timer handler to trigger a context switch!

10

Timer Demo

// this program runs timer_ interrupt handler every 0.5 seconds

void timer interrupt_handler() {
cout << "Timer interrupt occurred!" << endl;
}

int main(int argc, char *argv[]) {
// specify microsecond interval and function to call
timer_init(500000, timer interrupt handler);
while (true) {}

. interrupt.cc y

Timer and Interrupts

We can use the timer to trigger a context switch!

* For simplicity, on assign5 we’ll always do a context switch when the timer fires
(e.g. even if a thread finished early, and another started early, we still switch
every X ms)

 Want to avoid: what if the timer goes off while we are handling the timer
going off?

* Key detail: the timer disables interrupts when running your timer handler, to
avoid the timer interrupting itself. Interrupts are re-enabled once the handler
finishes. (“do not disturb”)

* Interrupt disabling is global state (not per thread), cannot be done by user
programs.

12

Timer Demo

// this program runs timer_ interrupt handler every 0.5 seconds

Interrupts globally

void timer_interrupt_handler() {4 disabled at start
cout << "Timer interrupt occurred!" << endl;

}\ Interrupts globally re-enabled after

int main(int argc, char *argv[]) {
// specify microsecond interval and function to call
timer_init(500000, timer interrupt handler);
while (true) {}

. interrupt.cc A

Approximate timer.cc Code

void timer_interrupt() {
if (!enabled flag) {
// defers timer alarm until later

interrupted = 1;
return;

¥

intr_enable(false);
timer_handler(); // calls our timer handler

intr_enable(true);

14

Timer and Interrupts

We can use the timer to trigger a context switch! Let’s see what this looks like.

context-switch-preemption-buggy.cc (and non-buggy version)

Enabling/Disabling Interrupts

If we are switching between two already-running threads, interrupts will always
be properly enabled and disabled. “Interrupt handshake”. Let’s see how!

(Note: assumption we are running on a single-core system, and we’ll focus on
switching between already-running threads for now).

16

Enabling/Disabling Interrupts

Thread #1 (Running) Thread #2
void timer_interrupt_handler() { void timer_interrupt_handler() {
cont(.e>.<’.c_switch (*nonrunning thread, #context_swi’cch (*nonrunning_thread,
*current_thread); *current_thread);

} }
int main(int argc, char *argv[]) { void other_func() {

. while (true) {

while (true) { cout << "Other thread here!

cout << "I am the main thread" | Hello." << endl;
<< endl; }
} }

17

Enabling/Disabling Interrupts

Thread #1 (Running)

#void timer _interrupt_handler() {

context_switch(*nonrunning thread,
*current_thread);
}

int main(int argc, char *argv[]) {

while (true) {
cout << "I am the main thread"”
<< endl;

Thread #2

void timer_interrupt _handler() {

#context_switch(*non running_thread,

*current_thread);

}

void other_func() {
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

Timer!)

18

Enabling/Disabling Interrupts

Thread #1 (Running)

void timer_interrupt_handler() {

Thread #2

void timer_interrupt _handler() {

#context_switch (*nonrunning thread, #context_swi’cch (*nonrunning_thread,

*current_thread);

}

int main(int argc, char *argv[]) {

while (true) {
cout << "I am the main thread"
<< endl;

*current_thread);

}

void other_func() {
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

19

Enabling/Disabling Interrupts

Thread #1

void timer _interrupt _handler() {

Thread #2 (Running)

void timer_interrupt _handler() {

#context_switch (*nonrunning thread, #context_swi’cch (*nonrunning_thread,

*current_thread);

}

int main(int argc, char *argv[]) {

while (true) {
cout << "I am the main thread"”
<< endl;

*current_thread);

}

void other_func() {
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

20

Enabling/Disabling Interrupts

Thread #1

void timer _interrupt _handler() {

#context_switch (*nonrunning_thread,
*current_thread);

} »}

int main(int argc, char *argv[]) {

while (true) {
cout << "I am the main thread"”
<< endl;

Thread #2 (Running)

void timer_interrupt _handler() {

context_switch(*nonrunning thread,

*current_thread);

void other_func() {
while (true) {

cout <<

"Other thread here!

Hello." << endl;

}

}

21

Enabling/Disabling Interrupts

Thread #1

void timer _interrupt _handler() {

#context_switch (*nonrunning_thread,
*current_thread);
}

int main(int argc, char *argv[]) {

while (true) {
cout << "I am the main thread"”
<< endl;

Thread #2 (Running)

void timer_interrupt _handler() {

context_switch(*nonrunning thread,

}

*current_thread);

void other_func() {
while (true) {

cout <<

"Other thread here!

Hello." << endl;

}

}

22

Enabling/Disabling Interrupts

Thread #1 Thread #2 (Running)
void timer_interrupt_handler() { »VOid timer_interrupt_handler() {
#conté;(:c_switch(*nonrunning_thread, context_switch(*nonrunning_thread,
*current_thread); *current_thread);
} }
int main(int argc, char *argv[]) { void other_func() {
. while (true) {
while (true) { cout << "Other thread here!
cout << "I am the main thread" | Hello." << endl;
<< endl; }
} }
}

Timer!)

23

Enabling/Disabling Interrupts

Thread #1

void timer _interrupt _handler() {

Thread #2 (Running)

void timer_interrupt _handler() {

#context_switch (*nonrunning thread, #context_swi’cch (*nonrunning_thread,

*current_thread);

}

int main(int argc, char *argv[]) {

while (true) {
cout << "I am the main thread"”
<< endl;

*current_thread);

}

void other_func() {
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

24

Enabling/Disabling Interrupts

Thread #1 (Running)

void timer _interrupt _handler() {

Thread #2

void timer_interrupt _handler() {

#context_switch (*nonrunning thread, #context_swi’cch (*nonrunning_thread,

*current_thread);

}

int main(int argc, char *argv[]) {

while (true) {
cout << "I am the main thread"”
<< endl;

*current_thread);

}

void other_func() {
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

25

Enabling/Disabling Interrupts

Thread #1 (Running) Thread #2

void timer interrupt_handler() { void timer_interrupt_handler() {

context_switch(*nonrunning thread, #context_swi’cch (*nonrunning_thread,

*current_thread); *current_thread);
)’ /
int main(int argc, char *argv[]) { void other_func() {
. while (true) {
while (true) { cout << "Other thread here!
cout << "I am the main thread" @ Hello." << endl;
<< endl; }
} }

26

Enabling/Disabling Interrupts

Thread #1 (Running) Thread #2

void timer interrupt_handler() { void timer_interrupt_handler() {

context_switch(*nonrunning thread, #context_swi’cch (*nonrunning_thread,

*current_thread); *current_thread);

} }
int main(int argc, char *argv[]) { void other_func() {

. while (true) {

while (true) { cout << "Other thread here!

cout << "I am the main thread" | Hello." << endl;
<< endl; }
} }

27

Enabling/Disabling Interrupts

What about when a thread runs for the first time? Will interrupts be enabled?
Key note: new threads start running at the start of their function, not the timer
handler.

28

Will interrupts be enabled when

Thread #2 first runs?

Thread #1 (Running) Thread #2

void timer_interrupt_handler() { void timer_interrupt_handler() {

context_switch(*nonrunning thread, context_switch(*nonrunning_thread,
*current_thread); *current_thread);

} }

int main(int argc, char *argv[]) { -VOid other_func() {
while (true) {

Qﬁile (true) { cout << "Other thread here!
cout << "I am the main thread" @ Hello." << endl;
<< endl; }
} }

Respond on PollEv: g
pollev.com/cs111 L

29

What will the interrupt state be when thread #2 first runs?

enabled: this is good so that we can switch to another thread later

enabled: this is bad because the thread could be switched off soon after it starts running

disabled: this is good so that the thread has time to run

disabled: this is bad because the thread can never be interrupted

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Enabling/Disabling Interrupts

Thread #1 (Running) Thread #2

void timer_interrupt_handler() { void timer_interrupt_handler() {

contéi%_switch(*nonrunning_thread, context_switch(*nonrunning_thread,
*current_thread); *current_thread);

} }

int main(int argc, char *argv[]) { #VOid other_func() {
while (true) {

Qﬁile (true) { cout << "Other thread here!
cout << "I am the main thread" @ Hello." << endl;
<< endl; }
} }

31

Enabling/Disabling Interrupts

Thread #1 (Running)

#void timer _interrupt_handler() {

context_switch(*nonrunning thread,
*current_thread);
}

Thread #2

void timer_interrupt _handler() {

context_switch(*nonrunning thread,

}

*current_thread);

int main(int argc, char *argv[]) { #VOid other_func() {

while (true) {
cout << "I am the main thread"”
<< endl;

Timer! ¥

while (true) {
cout << "Other thread here!

Hello." << endl;

}

}

32

Enabling/Disabling Interrupts

Thread #1 (Running)

void timer_interrupt_handler() {

#context_switch(*non running_thread,
*current_thread);
}

Thread #2

void timer_interrupt _handler() {

context_switch(*nonrunning thread,

}

*current_thread);

int main(int argc, char *argv[]) { #VOid other_func() {

while (true) {
cout << "I am the main thread"
<< endl;

while (true) {
cout << "Other thread here!

Hello." << endl;

}

}

33

Enabling/Disabling Interrupts

Thread #1 (Running)

void timer _interrupt _handler() {

#context_switch (*nonrunning_thread,
*current_thread);
}

Thread #2 (Running)

void timer_interrupt _handler() {

context_switch(*nonrunning thread,

}

*current_thread);

int main(int argc, char *argv[]) { #VOid other_func() {

while (true) {
cout << "I am the main thread"”
<< endl;

while (true) {
cout << "Other thread here!

Hello." << endl;

}

}

34

Enabling/Disabling Interrupts

Thread #1 (Running) Thread #2 (Running)
void timer_interrupt_handler() { void timer_interrupt_handler() {
#conté;(:c_switch (*nonrunning_thread, context_switch(*nonrunning_thread,
*current_thread); *current_thread);
} }

int main(int argc, char *argv[]) { | void other_func() {

while (true) {

Qﬁile (true) { cout << "Other thread here!
cout << "I am the main thread" @ Hello." << endl;
<< endl; }
t }

Problem: when we start executing another thread for the first time, it
won't re-enable interrupts, so the timer won’t be heard anymore!

35

Enabling/Disabling Interrupts

Thread #1 (Running) Thread #2 (Running)
void timer_interrupt_handler() { void timer_interrupt_handler() {
#conté;(:c_switch (*nonrunning_thread, context_switch(*nonrunning_thread,
*current_thread); *current_thread);
} }
int main(int argc, char *argv[]) { void other_func() {

q while (true) {
whila (+run) [cout << "Other thread here!l

Existing thread: freeze frame is in timer handler, interrupts automatically re-enabled
on exit.

New thread: freeze frame is at start of function, no automatic re-enabling of
Interrupts!

\ 36

Demo: context-switch-
preemption-buggy.cc

Enabling Interrupts

Solution: manually enable interrupts when a thread is first run.
void other func() {
intr_enable(true); // provided func to enable/disable

while (true) {
cout << "Other thread here! Hello." << endl;

¥

You’ll need to do this on assign5 when a thread is first run. Only necessary for
new threads; if a thread is paused that means when it was previously running,
the timer handler was called and it context-switched to another thread.
Therefore, when that thread resumes, it will resume at the end of the timer
handler, where interrupts are re-enabled. 38

Interrupts So Far

* Interrupts can be turned on and off globally

* When the timer fires, it disables interrupts while the timer handler is running,
and re-enables them after

* We must make sure that the new thread always enables interrupts when it is
switched to

39

Plan For Today

* Implementing Locks

cp -r /afs/ir/class/csl11l/lecture-code/lect19 . 40

Implementing Locks

Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
* Track whether it is locked / unlocked

* The lock “owner” (if any) — perhaps combine with first bullet

* A list of threads waiting to get this lock

41

Implementing Locks

Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
* Track whether it is locked / unlocked

* The lock “owner” (if any) — perhaps combine with first bullet

* A list of threads waiting to get this lock

We can keep a queue of threads
(for fairness).

42

1. If this lock is unlocked, mark it as locked by the current thread
2. Otherwise, add the current thread to the back of the waiting queue

// Instance variables
int locked = ©;
ThreadQueue q; // blocked threads, not ready threads

void Lock::lock() {
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread(); // block/switch to next ready thread

43

1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::unlock() {
if (q.empty()) {
locked = ©;
} else {
unblockThread(q.remove()); // add to ready queue
}

44

1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock: :unlock() {
if (q.empty()) {
locked = ©;
} else {

Mutex remains locked. And new
owner may not run immediately!

unblockThread(q.remove()); // add to ready queue

¥

45

Implementing Locks

With our understanding of threads and how they are run and switched between,
we can understand how a mutex works — cool!

Question: could race conditions occur in our mutex implementation?

Yes. We can be interrupted at any time to switch to another thread.

We can have race conditions within the thing that helps us prevent race
conditions? How are we supposed to fix that?

* We can’t use a mutex, because we’re writing the code to implement it!

More next time...
46

* Recap: Scheduling Lecture 19 takeaway: To
* Preemption and Interrupts Implement preemption and
* Implementing Locks locks, we must make sure to

correctly enable and disable
Interrupts. Locks consist of a
waliting queue and context
switching to make threads
sleep.

Next time: More about mutex and
condition variable implementations 4

	Default Section
	Slide 1: CS111, Lecture 19 Preemption and Implementing Locks
	Slide 2: CS111 Topic 3: Multithreading, Part 2
	Slide 3: Learning Goals
	Slide 4: Plan For Today
	Slide 5: Plan For Today
	Slide 6: Scheduling
	Slide 7: Shortest Remaining Processing Time
	Slide 8: SRPT
	Slide 9: Plan For Today
	Slide 10: Preemption and Interrupts
	Slide 11: Timer Demo
	Slide 12: Timer and Interrupts
	Slide 13: Timer Demo
	Slide 14: Approximate timer.cc Code
	Slide 15: Timer and Interrupts
	Slide 16: Enabling/Disabling Interrupts
	Slide 17: Enabling/Disabling Interrupts
	Slide 18: Enabling/Disabling Interrupts
	Slide 19: Enabling/Disabling Interrupts
	Slide 20: Enabling/Disabling Interrupts
	Slide 21: Enabling/Disabling Interrupts
	Slide 22: Enabling/Disabling Interrupts
	Slide 23: Enabling/Disabling Interrupts
	Slide 24: Enabling/Disabling Interrupts
	Slide 25: Enabling/Disabling Interrupts
	Slide 26: Enabling/Disabling Interrupts
	Slide 27: Enabling/Disabling Interrupts
	Slide 28: Enabling/Disabling Interrupts
	Slide 29: Will interrupts be enabled when Thread #2 first runs?
	Slide 30
	Slide 31: Enabling/Disabling Interrupts
	Slide 32: Enabling/Disabling Interrupts
	Slide 33: Enabling/Disabling Interrupts
	Slide 34: Enabling/Disabling Interrupts
	Slide 35: Enabling/Disabling Interrupts
	Slide 36: Enabling/Disabling Interrupts
	Slide 37: Demo: context-switch-preemption-buggy.cc
	Slide 38: Enabling Interrupts
	Slide 39: Interrupts So Far
	Slide 40: Plan For Today
	Slide 41: Implementing Locks
	Slide 42: Implementing Locks
	Slide 43: Lock
	Slide 44: Unlock
	Slide 45: Unlock
	Slide 46: Implementing Locks
	Slide 47: Recap

