CS111, Lecture 20

Implementing Locks and Condition Variables

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared, 1
uploaded, or distributed. (without expressed written permission)

CS111 Topic 3: Multithreading, Part 2

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

Preemption Implementing
and Locks and

Dispatching Scheduling

»

»

Implementing Condition
Locks Variables

Lecture 17 Lecture 18 Lecture 19 This Lecture

assign5: implement your own version of thread, mutex and condition_variable!

Learning Goals

* See how our understanding of thread dispatching/scheduling allows us to fully
implement locks

* Understand the general design for how to implement condition variables

Plan For Today

* Recap: Preemption and Locks so far
* Implementing Locks

* Implementing Condition Variables

* assignb

Plan For Today

* Recap: Preemption and Locks so far

Preemption and Interrupts

On assign5, you’ll implement a dispatcher with scheduling using the Round
Robin approach.

* Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run
code every X microseconds.

* Fires a timer interrupt at specified interval

Idea: we can use the timer handler to trigger a context switch!
(For simplicity, on assign5 we’ll always do a context switch when the timer fires)

When the timer handler is called, it’s called with (all) interrupts disabled. Why?
To avoid a timer handler interrupting a timer handler. (Interrupts are global
state). When the timer handler finishes, interrupts are re-enabled.

// code within timer
void timer_interrupt() {

intr_enable(false);
timer_handler();
intr_enable(true);

}

Problem: because we context switch in the middle of the timer handler, when
we start executing another thread for the first time, we will have interrupts
disabled and the timer won’t be heard anymore!

Enabling Interrupts

Solution: manually enable interrupts when a thread is first run.
void other func() {
intr_enable(true); // provided func to enable/disable
while (true) {
cout << "Other thread here! Hello." << endl;

You’ll need to do this on assign5 when a thread is first run.

What about when we switch to a thread that we’ve already run before? Do we
need to enable interrupts there too?

No need - if a thread is paused that means when it was previously running, the
timer handler was called and it context-switched to another thread. Therefore,

when that thread resumes, it will resume at the end of the timer handler,
where interrupts are re-enabled.

Implementing Locks

Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
* Track whether it is locked / unlocked

* The lock “owner” (if any) — perhaps combine with first bullet

* A list of threads waiting to get this lock

10

1. If this lock is unlocked, mark it as locked by the current thread
2. Otherwise, add the current thread to the back of the waiting queue

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread(); // block/switch to next ready thread

11

1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::unlock() {
if (q.empty()) {
locked = ©;
} else {
unblockThread(q.remove()); // add to ready queue
}

12

1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::unlock() {
if (q.empty()) {
locked = ©;
} else {
unblockThread(q.remove()); // add to ready queue
}

13

Plan For Today

* Implementing Locks

14

We can be interrupted while executing this code — for instance, say two threads
try to lock at the same time. How could two threads both get ownership of the
lock? (Hint: similar to ticket-selling with a conditional followed by an update)

int locked = ©;
ThreadQueue (q;

void Lock::lock() {
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread(); // block/switch to next ready thread

) Respond on PollEv: ¢
pollev.com/cs111 L

15

Say two threads try to lock at the same time. How could two threads both get ownership of the
lock?

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Race Conditions

// Instance variables void Lock::unlock() {
int locked = 0; if (qg.empty()) {
ThreadQueue g; locked = 0;
} else {
void Lock::lock() { // add to ready queue
if (!locked) { unblockThread(g.remove());
locked = 1;— }

} else { }
d.add(currentThread);

// block/switch to next
// ready thread
blockThread(); One possible problem: thread 1 is in the middle of

y h getting ownership, but then the timer fires, we
switch to thread 2, and it locks the mutex. Then
thread 1 resumes and also gets the mutex.

17

Locks and Race Conditions

We can have race conditions within the thing that helps us prevent race
conditions? How are we supposed to fix that?

* We can’t use a mutex, because we’re writing the code to implement it!

 We need to disable interrupts — for a single-core system, this is sufficient to
guarantee that no other thread will run.

18

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
intr_enable(false);
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread(); // block/switch to next ready thread

19

// Instance varilables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
intr_enable(false);
if (!locked) {

locked = 1;
intr_enable(true);
} else {

q.add(currentThread);

There’s an air gap where we could switch
to another thread after re-enabling
interrupts but before we block. What
problems could we potentially run into?
(Hint: like condition variable problem of
unlocking before waiting)

intr_enable(true); // ??
—blockThr‘ead(); // block/switch to next ready thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
intr_enable(false);
if (!locked) {

locked = 1;
intr_enable(true);
} else {

d.add(currentThread);

We could be interrupted here by the
current owner — it could unlock the

mutex and mark us as ready, but then we
block!

intr_enable(true); // ??
—blockThr‘ead(); // block/switch to next ready thread

21

Lock

// Instance varilables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
intr_enable(false);
if (!locked) {

locked = 1;
intr_enable(true);
} else {

g.add(currentThread);
intr_enable(true); // ??
blockThread(); // block/swit

Possible scenario (2 threads):

1. Thread #1 locks mutex

2. Thread #2 attempts to lock
mutex, adds itself to the queue,
enables interrupts

3. Right before thread #2 blocks,

thread #1 unlocks the mutex
and unblocks thread #2

4. Thread #2 then proceeds to

block.

5. Nobody unblocks thread #2 ®

22

// Instance varilables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
intr_enable(false);
if (!locked) {
locked = 1;
} else {

q.add(currentThread);

blockThread();
}

intr_enable(true);

Two new questions:

1. What happens if someone calls
lock and they already chose to
disable interrupts?

2. This means when we switch to
another thread, interrupts are
disabled. Is that a problem?

// block/switch to next ready thread

// Instance varilables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
intr_enable(false);
if (!locked) {
locked = 1;
} else {

q.add(currentThread);

blockThread();
}

intr_enable(true);

Two new questions:

1. What happens if someone calls
lock and they already chose to
disable interrupts?

2. This means when we switch to
another thread, interrupts are
disabled. Is that a problem?

// block/switch to next ready thread

Disabling/Enabling Interrupts

void importantFunc() {
intr_enable(false);

myLock.lock();

intr_enable(true);

¥

void Lock::lock() {
intr_enable(false);

intr_enable(true);

Oops - interrupts are
re-enabled here,
since lock re-
enabled them!

25

int locked = ©;
ThreadQueue q;

void Lock::lock() { Remember whether
bool interruptsEnabled = intr_enabled(); .
if (interruptsEnabled) { ammm 'NEITUPLS were on
intr_enable(false); before, and disable
%f (11ocked) { them if they are on
locked = 1;
} else {

g.add(currentThread);
blockThread(); // block/switch to next ready thread

}
if (interruptsEnabled) {

intr_enable(true);
¥

int locked = ©;
ThreadQueue q;
void Lock::lock() {
bool interruptsEnabled = intr_enabled();
if (interruptsEnabled) {
intr_enable(false);

}
if (!locked) {

locked = 1;
} else {

g.add(currentThread);

blockThread(); // block/switch to next ready thread
} .
if (interruptsEnabled) { Re-enable them only if
} intr_enable(true); — ¢mmm===== ... were on before

27

Disabling/Enabling Interrupts

void Lock::lock() {

IntrGuard guard; IntrGuard is like unique_lock but
e for interrupts. It saves the current
} interrupt state (enabled/disabled)

when it’s created and turns
interrupts off. When it is deleted, it
restores interrupts to the saved
state.

Key idea: if interrupts are already
disabled when an IntrGuard is
created, it keeps them disabled.

28

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread(); // block/switch to next ready thread

29

1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::unlock() {
IntrGuard guard;
if (q.empty()) {
locked = 0;
} else {
unblockThread(q.remove()); // add to ready queue
}

30

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {

What happens when we switch to
the next ready thread? Interrupts
will be disabled! Is that a problem?

q.add(currentThread);

blockThread();

// block/switch to next ready thread

31

The Interrupt Handshake

Key idea: it’s not a problem if interrupts are disabled when we switch threads,

because this fits the same pattern we have already seen where, when going
from Thread A -> Thread B, A disables and B re-enables.

* Examples:
* A switches away via timer handler: interrupts disabled
A switches away here via blockThread(): interrupts disabled
B resumes in the timer handler: interrupts re-enabled
B is a new thread: interrupts re-enabled
B resumes and gets ownership of lock: interrupts re-enabled

32

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);

blockThread(); a—

Later wake up here,
exit lock(), re-enable
interrupts because of

IntrGuard

33

& Enabling/Disabling Interrupts

Thread #1 (running) Thread #2
}void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!'locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

34

a Enabling/Disabling Interrupts

Thread #1 (running)

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

Thread #2

void Lock::lock() {
IntrGuard guard;
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

35

a Enabling/Disabling Interrupts

Thread #1 (running)

void Lock::lock() {
IntrGuard guard;
M) if (1locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

Thread #2

void Lock::lock() {
IntrGuard guard;
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

36

Q Enabling/Disabling Interrupts

Thread #1 (running)

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

Thread #2

void Lock::lock() {
IntrGuard guard;
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

37

Enabling/Disabling Interrupts

Thread #1 (running)

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

Thread #2

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

38

Q Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

Thread #2

void Lock::lock() {

IntrGuard guard;

if (!locked) {
locked = 1;

} else {
g.add(currentThread);
blockThread();

Timer! &3

39

Q Enabling/Disabling Interrupts

Thread #1 (running)

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

¥

>Enter‘ timer handler, where

interrupts are disabled at start.

Thread #2

void Lock::lock() {
IntrGuard guard;
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

40

=

Thread #1 (running)

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked 1;
} else {
g.add(currentThread);
blockThread();

¥

Enter timer handler, where
interrupts are disabled at start

g

Enabling/Disabling Interrupts

Thread #2

void Lock::lock() {
IntrGuard guard;
if (!'locked) {
locked 1;
} else {
g.add(currentThread);
blockThread();

¥

Resume 1n timer handler, where

interrupts are re-enabled at end.

41

Q Enabling/Disabling Interrupts

Thread #1

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

Thread #2 (running)

#void Lock: :1lock() {

IntrGuard guard;

if (!'locked) {
locked = 1;

} else {
g.add(currentThread);
blockThread();

42

Q Enabling/Disabling Interrupts

Thread #1

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

Thread #2 (running)

void Lock::lock() {
IntrGuard guard;
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

43

Q Enabling/Disabling Interrupts

Thread #1

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

Thread #2 (running)
void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

44

Q Enabling/Disabling Interrupts

Thread #1

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

Thread #2 (running)
void Lock::lock() {
IntrGuard guard;
if (!'locked) {
locked = 1;
} else {

> g.add(currentThread);
blockThread();

45

Q Enabling/Disabling Interrupts

Thread #1

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

Thread #2 (running)

void Lock::lock() {
IntrGuard guard;
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);

blockThread();
}
}

46

Q Enabling/Disabling Interrupts

Thread #1

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

esume 1in timer handler, where

interrupts are re-enabled at end.

Thread #2 (blocked)

void Lock::lock() {
IntrGuard guard;
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

47

Q Enabling/Disabling Interrupts

Thread #1 (running) Thread #2 (blocked)
}void Lock: :unlock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
if (q.empty()) { if (!'locked) {
locked = ©; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} blockThread();
} }

48

Q Enabling/Disabling Interrupts

Thread #1 (running)
void Lock: :unlock() {
IntrGuard guard;

if (q.empty()) {
locked = ©;

} else {

¥

unblockThread(qg.remove());

Thread #2 (blocked)

void Lock::lock() {
IntrGuard guard;
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

49

Enabling/Disabling Interrupts

Thread #1 (running)

void Lock::unlock() {
IntrGuard guard;

if (q.empty()) {

locked = ©;
} else {
unblockThread(qg.remove());

¥
}

Thread #2

void Lock::lock() {
IntrGuard guard;
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

50

Enabling/Disabling Interrupts

Thread #1 (running)

void Lock::unlock() {
IntrGuard guard;
if (q.empty()) {
locked = ©;
} else {
unblockThread(qg.remove());
}

)}

Thread #2

void Lock::lock() {
IntrGuard guard;
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

51

Q Enabling/Disabling Interrupts

Thread #1 (running) Thread #2
void Lock::unlock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
if (q.empty()) { if (!'locked) {
locked = ©; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} blockThread();
} }
}

Timer! &3

52

Q Enabling/Disabling Interrupts

Thread #1 (running)

void Lock::unlock() {
IntrGuard guard;
if (q.empty()) {
locked = ©;
} else {
unblockThread(qg.remove());
}

¥

>Enter‘ timer handler, where
interrupts are disabled at start.

Thread #2

void Lock::lock() {
IntrGuard guard;
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

53

Q Enabling/Disabling Interrupts

Thread #1

void Lock::unlock() {
IntrGuard guard;

if (q.empty()) {
locked = ©;

} else {

¥

unblockThread(qg.remove());

Thread #2

void Lock::lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
d.add(currentThread);

blockThread();
}

54

Q Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::unlock() { void Lock::lock() {
IntrGuard guard; IntrGuard guard;
if (q.empty()) { if (!'locked) {
locked = ©; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} blockThread();
} }

)}

55

On assignb5, there are various places where interrupts can cause complications.

* This sounds like a race condition problem we can solve with mutexes!....right?

* Not in this case — because we are the OS, and we implement mutexes! And
they rely on the thread dispatching code in this assignment.

* Therefore, the mechanism for avoiding race conditions in our Thread and
Mutex/Condition Variable implementations is to enable/disable interrupts
when we don’t want to be interrupted (e.g. by timer).

* E.g. we could be in the middle of adding to the ready queue, but then the
timer fires and we go to remove something from the ready queue!

* Interrupts are a global state — not per-thread.

* We're assuming a single-core machine, where disabling interrupts is sufficient
to guarantee no other thread will run. .

Yield

Another trigger that may switch threads is a function you will implement called
yield.

* Yield is an assign5 function that can be called by a thread to give up the CPU
voluntarily even though it can still do work (how considerate!)

* When you implement yield, the same idea applies for interrupt re-enabling as
for the timer handler.

57

Plan For Today

* Implementing Condition Variables

58

Implementing Condition Variables

Now that we understand how thread dispatching/scheduling works, we can
write our own condition variable implementation! Condition variables need to
block threads (functionality the dispatcher / scheduler provides).

wait(mutex& m)
notify _one()
notify_all()

What does the design of a condition variable look like? What state does it
need?

59

1. Should atomically put the thread to sleep and unlock the specified lock

2. When that thread wakes up, it should reacquire the specified lock before
returning

60

notify_one and notify_all

notify_one

 Should wake up/unblock the first waiting thread (we are guaranteeing FIFO in
our implementation)

notify_all
* Should wake up/unblock all waiting threads

For both: if no-one waiting, does nothing.

61

Plan For Today

* assignb

* Implement Thread, Mutex and Condition

* Mutex and Condition will use public methods from your Thread class
* Use new C++ feature: static

63

Plan For Today

* Recap: Preemption and Locks so far Lecture 20 takeaway: Locks
* Implementing Locks consist of a waiting queue

* Implementing Condition Variables and redispatching to make

e assign5 threads sleep. Condition

variables also need to make
threads sleep until they are
notified.

Next time: Virtual Memory

64

	Default Section
	Slide 1: CS111, Lecture 20 Implementing Locks and Condition Variables
	Slide 2: CS111 Topic 3: Multithreading, Part 2
	Slide 3: Learning Goals
	Slide 4: Plan For Today
	Slide 5: Plan For Today
	Slide 6: Preemption and Interrupts
	Slide 7: Interrupts
	Slide 8: Enabling Interrupts
	Slide 9: Interrupts
	Slide 10: Implementing Locks
	Slide 11: Lock
	Slide 12: Unlock
	Slide 13: Unlock
	Slide 14: Plan For Today
	Slide 15: Lock
	Slide 16
	Slide 17: Race Conditions
	Slide 18: Locks and Race Conditions
	Slide 19: Lock
	Slide 20: Lock
	Slide 21: Lock
	Slide 22: Lock
	Slide 23: Lock
	Slide 24: Lock
	Slide 25: Disabling/Enabling Interrupts
	Slide 26: Lock
	Slide 27: Lock
	Slide 28: Disabling/Enabling Interrupts
	Slide 29: Lock
	Slide 30: Unlock
	Slide 31: Lock
	Slide 32: The Interrupt Handshake
	Slide 33: Lock
	Slide 34: Enabling/Disabling Interrupts
	Slide 35: Enabling/Disabling Interrupts
	Slide 36: Enabling/Disabling Interrupts
	Slide 37: Enabling/Disabling Interrupts
	Slide 38: Enabling/Disabling Interrupts
	Slide 39: Enabling/Disabling Interrupts
	Slide 40: Enabling/Disabling Interrupts
	Slide 41: Enabling/Disabling Interrupts
	Slide 42: Enabling/Disabling Interrupts
	Slide 43: Enabling/Disabling Interrupts
	Slide 44: Enabling/Disabling Interrupts
	Slide 45: Enabling/Disabling Interrupts
	Slide 46: Enabling/Disabling Interrupts
	Slide 47: Enabling/Disabling Interrupts
	Slide 48: Enabling/Disabling Interrupts
	Slide 49: Enabling/Disabling Interrupts
	Slide 50: Enabling/Disabling Interrupts
	Slide 51: Enabling/Disabling Interrupts
	Slide 52: Enabling/Disabling Interrupts
	Slide 53: Enabling/Disabling Interrupts
	Slide 54: Enabling/Disabling Interrupts
	Slide 55: Enabling/Disabling Interrupts
	Slide 56: Interrupts
	Slide 57: Yield
	Slide 58: Plan For Today
	Slide 59: Implementing Condition Variables
	Slide 60: wait
	Slide 61: notify_one and notify_all
	Slide 62: Plan For Today
	Slide 63: assign5
	Slide 64: Plan For Today

