
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 20
Implementing Locks and Condition Variables

2

CS111 Topic 3: Multithreading, Part 2

Dispatching Scheduling

Preemption
and

Implementing
Locks

Implementing
Locks and
Condition
Variables

Lecture 17 Lecture 18 Lecture 19

assign5: implement your own version of thread, mutex and condition_variable!

This Lecture

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

3

Learning Goals

• See how our understanding of thread dispatching/scheduling allows us to fully
implement locks

• Understand the general design for how to implement condition variables

4

Plan For Today

• Recap: Preemption and Locks so far

• Implementing Locks

• Implementing Condition Variables

• assign5

5

Plan For Today

• Recap: Preemption and Locks so far

• Implementing Locks

• Implementing Condition Variables

• assign5

6

Preemption and Interrupts

On assign5, you’ll implement a dispatcher with scheduling using the Round
Robin approach.

• Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run
code every X microseconds.

• Fires a timer interrupt at specified interval

Idea: we can use the timer handler to trigger a context switch!

(For simplicity, on assign5 we’ll always do a context switch when the timer fires)

7

Interrupts

When the timer handler is called, it’s called with (all) interrupts disabled. Why?
To avoid a timer handler interrupting a timer handler. (Interrupts are global
state). When the timer handler finishes, interrupts are re-enabled.

// code within timer
void timer_interrupt() {
 ...
 intr_enable(false);
 timer_handler();
 intr_enable(true);
}

Problem: because we context switch in the middle of the timer handler, when
we start executing another thread for the first time, we will have interrupts
disabled and the timer won’t be heard anymore!

8

Enabling Interrupts

Solution: manually enable interrupts when a thread is first run.

void other_func() {

 intr_enable(true); // provided func to enable/disable

 while (true) {

 cout << "Other thread here! Hello." << endl;

 }

}

You’ll need to do this on assign5 when a thread is first run.

9

Interrupts

What about when we switch to a thread that we’ve already run before? Do we
need to enable interrupts there too?

No need – if a thread is paused that means when it was previously running, the
timer handler was called and it context-switched to another thread. Therefore,
when that thread resumes, it will resume at the end of the timer handler,
where interrupts are re-enabled.

10

Implementing Locks

Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?

• Track whether it is locked / unlocked

• The lock “owner” (if any) – perhaps combine with first bullet

• A list of threads waiting to get this lock

11

Lock

1. If this lock is unlocked, mark it as locked by the current thread

2. Otherwise, add the current thread to the back of the waiting queue

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
}

12

Unlock

1. If no-one is waiting for this lock, mark it as unlocked

2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::unlock() {
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove()); // add to ready queue
 }
}

13

Unlock

1. If no-one is waiting for this lock, mark it as unlocked

2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::unlock() {
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove()); // add to ready queue
 }
}

14

Plan For Today

• Recap: Preemption and Locks so far

• Implementing Locks

• Implementing Condition Variables

• assign5

15

Lock

We can be interrupted while executing this code – for instance, say two threads
try to lock at the same time. How could two threads both get ownership of the
lock? (Hint: similar to ticket-selling with a conditional followed by an update)

int locked = 0;
ThreadQueue q;

void Lock::lock() {
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
} Respond on PollEv:

pollev.com/cs111

16

17

Race Conditions

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);

 // block/switch to next
 // ready thread
 blockThread();
 }
}

void Lock::unlock() {
 if (q.empty()) {
 locked = 0;
 } else {
 // add to ready queue
 unblockThread(q.remove());
 }
}

One possible problem: thread 1 is in the middle of
getting ownership, but then the timer fires, we
switch to thread 2, and it locks the mutex. Then
thread 1 resumes and also gets the mutex.

18

Locks and Race Conditions

We can have race conditions within the thing that helps us prevent race
conditions? How are we supposed to fix that?

• We can’t use a mutex, because we’re writing the code to implement it!

• We need to disable interrupts – for a single-core system, this is sufficient to
guarantee that no other thread will run.

19

Lock

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 intr_enable(false);
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
}

20

Lock

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 intr_enable(false);
 if (!locked) {
 locked = 1;
 intr_enable(true);
 } else {
 q.add(currentThread);
 intr_enable(true); // ??
 blockThread(); // block/switch to next ready thread
 }
}

There’s an air gap where we could switch
to another thread after re-enabling
interrupts but before we block. What
problems could we potentially run into?
(Hint: like condition variable problem of
unlocking before waiting)

21

Lock

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 intr_enable(false);
 if (!locked) {
 locked = 1;
 intr_enable(true);
 } else {
 q.add(currentThread);
 intr_enable(true); // ??
 blockThread(); // block/switch to next ready thread
 }
}

We could be interrupted here by the
current owner – it could unlock the
mutex and mark us as ready, but then we
block!

22

Lock

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 intr_enable(false);
 if (!locked) {
 locked = 1;
 intr_enable(true);
 } else {
 q.add(currentThread);
 intr_enable(true); // ??
 blockThread(); // block/switch to next ready thread
 }
}

Possible scenario (2 threads):
1. Thread #1 locks mutex
2. Thread #2 attempts to lock

mutex, adds itself to the queue,
enables interrupts

3. Right before thread #2 blocks,
thread #1 unlocks the mutex
and unblocks thread #2

4. Thread #2 then proceeds to
block.

5. Nobody unblocks thread #2 

23

Lock

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 intr_enable(false);
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
 intr_enable(true);
}

Two new questions:
1. What happens if someone calls

lock and they already chose to
disable interrupts?

2. This means when we switch to
another thread, interrupts are
disabled. Is that a problem?

24

Lock

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 intr_enable(false);
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
 intr_enable(true);
}

Two new questions:
1. What happens if someone calls

lock and they already chose to
disable interrupts?

2. This means when we switch to
another thread, interrupts are
disabled. Is that a problem?

25

Disabling/Enabling Interrupts

void importantFunc() {
 intr_enable(false);
 ...
 myLock.lock();
 ...
 intr_enable(true);
}

void Lock::lock() {
 intr_enable(false);
 ...
 intr_enable(true);
}

Oops - interrupts are
re-enabled here,

since lock re-
enabled them!

26

Lock

int locked = 0;
ThreadQueue q;
void Lock::lock() {
 bool interruptsEnabled = intr_enabled();
 if (interruptsEnabled) {
 intr_enable(false);
 }
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
 if (interruptsEnabled) {
 intr_enable(true);
 }
}

Remember whether
interrupts were on
before, and disable
them if they are on

27

Lock

int locked = 0;
ThreadQueue q;
void Lock::lock() {
 bool interruptsEnabled = intr_enabled();
 if (interruptsEnabled) {
 intr_enable(false);
 }
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
 if (interruptsEnabled) {
 intr_enable(true);
 }
}

Re-enable them only if
they were on before

28

Disabling/Enabling Interrupts

void Lock::lock() {
 IntrGuard guard;
 ...
}

IntrGuard is like unique_lock but
for interrupts. It saves the current
interrupt state (enabled/disabled)
when it’s created and turns
interrupts off. When it is deleted, it
restores interrupts to the saved
state.

Key idea: if interrupts are already
disabled when an IntrGuard is
created, it keeps them disabled.

29

Lock

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
}

30

Unlock

1. If no-one is waiting for this lock, mark it as unlocked

2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove()); // add to ready queue
 }
}

31

Lock

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread(); // block/switch to next ready thread
 }
}

What happens when we switch to
the next ready thread? Interrupts
will be disabled! Is that a problem?

32

The Interrupt Handshake

Key idea: it’s not a problem if interrupts are disabled when we switch threads,
because this fits the same pattern we have already seen where, when going
from Thread A -> Thread B, A disables and B re-enables.

• Examples:
• A switches away via timer handler: interrupts disabled

• A switches away here via blockThread(): interrupts disabled

• B resumes in the timer handler: interrupts re-enabled

• B is a new thread: interrupts re-enabled

• B resumes and gets ownership of lock: interrupts re-enabled

33

Lock

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Later wake up here,
exit lock(), re-enable
interrupts because of

IntrGuard

34

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON

35

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
OFF

36

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
OFF

37

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
OFF

38

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON

39

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON

Timer!

40

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Enter timer handler, where
interrupts are disabled at start.

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
OFF

41

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Enter timer handler, where
interrupts are disabled at start.

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Resume in timer handler, where
interrupts are re-enabled at end.

Interrupts
OFF

42

Enabling/Disabling Interrupts

Thread #1
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON

43

Enabling/Disabling Interrupts

Thread #1
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
OFF

44

Enabling/Disabling Interrupts

Thread #1
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
OFF

45

Enabling/Disabling Interrupts

Thread #1
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
OFF

46

Enabling/Disabling Interrupts

Thread #1
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Thread #2 (running)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
OFF

47

Enabling/Disabling Interrupts

Thread #1
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Resume in timer handler, where
interrupts are re-enabled at end.

Thread #2 (blocked)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
OFF

48

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2 (blocked)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON

49

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2 (blocked)
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
OFF

50

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
OFF

51

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON

52

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Timer!

Interrupts
ON

53

Enabling/Disabling Interrupts

Thread #1 (running)
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Enter timer handler, where
interrupts are disabled at start.

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
OFF

54

Enabling/Disabling Interrupts

Thread #1
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
OFF

55

Enabling/Disabling Interrupts

Thread #1
void Lock::unlock() {
 IntrGuard guard;
 if (q.empty()) {
 locked = 0;
 } else {
 unblockThread(q.remove());
 }
}

Thread #2
void Lock::lock() {
 IntrGuard guard;
 if (!locked) {
 locked = 1;
 } else {
 q.add(currentThread);
 blockThread();
 }
}

Interrupts
ON

56

Interrupts

On assign5, there are various places where interrupts can cause complications.

• This sounds like a race condition problem we can solve with mutexes!....right?

• Not in this case – because we are the OS, and we implement mutexes! And
they rely on the thread dispatching code in this assignment.

• Therefore, the mechanism for avoiding race conditions in our Thread and
Mutex/Condition Variable implementations is to enable/disable interrupts
when we don’t want to be interrupted (e.g. by timer).

• E.g. we could be in the middle of adding to the ready queue, but then the
timer fires and we go to remove something from the ready queue!

• Interrupts are a global state – not per-thread.

• We’re assuming a single-core machine, where disabling interrupts is sufficient
to guarantee no other thread will run.

57

Yield

Another trigger that may switch threads is a function you will implement called
yield.

• Yield is an assign5 function that can be called by a thread to give up the CPU
voluntarily even though it can still do work (how considerate!)

• When you implement yield, the same idea applies for interrupt re-enabling as
for the timer handler.

58

Plan For Today

• Recap: Preemption and Locks so far

• Implementing Locks

• Implementing Condition Variables

• assign5

59

Implementing Condition Variables

Now that we understand how thread dispatching/scheduling works, we can
write our own condition variable implementation! Condition variables need to
block threads (functionality the dispatcher / scheduler provides).

wait(mutex& m)

notify_one()

notify_all()

What does the design of a condition variable look like? What state does it
need?

60

wait

1. Should atomically put the thread to sleep and unlock the specified lock

2. When that thread wakes up, it should reacquire the specified lock before
returning

61

notify_one and notify_all

notify_one

• Should wake up/unblock the first waiting thread (we are guaranteeing FIFO in
our implementation)

notify_all

• Should wake up/unblock all waiting threads

For both: if no-one waiting, does nothing.

62

Plan For Today

• Recap: Preemption and Locks so far

• Implementing Locks

• Implementing Condition Variables

• assign5

63

assign5

• Implement Thread, Mutex and Condition

• Mutex and Condition will use public methods from your Thread class

• Use new C++ feature: static

64

Plan For Today

• Recap: Preemption and Locks so far

• Implementing Locks

• Implementing Condition Variables

• assign5

Next time: Virtual Memory

Lecture 20 takeaway: Locks

consist of a waiting queue

and redispatching to make

threads sleep. Condition

variables also need to make

threads sleep until they are

notified.

	Default Section
	Slide 1: CS111, Lecture 20 Implementing Locks and Condition Variables
	Slide 2: CS111 Topic 3: Multithreading, Part 2
	Slide 3: Learning Goals
	Slide 4: Plan For Today
	Slide 5: Plan For Today
	Slide 6: Preemption and Interrupts
	Slide 7: Interrupts
	Slide 8: Enabling Interrupts
	Slide 9: Interrupts
	Slide 10: Implementing Locks
	Slide 11: Lock
	Slide 12: Unlock
	Slide 13: Unlock
	Slide 14: Plan For Today
	Slide 15: Lock
	Slide 16
	Slide 17: Race Conditions
	Slide 18: Locks and Race Conditions
	Slide 19: Lock
	Slide 20: Lock
	Slide 21: Lock
	Slide 22: Lock
	Slide 23: Lock
	Slide 24: Lock
	Slide 25: Disabling/Enabling Interrupts
	Slide 26: Lock
	Slide 27: Lock
	Slide 28: Disabling/Enabling Interrupts
	Slide 29: Lock
	Slide 30: Unlock
	Slide 31: Lock
	Slide 32: The Interrupt Handshake
	Slide 33: Lock
	Slide 34: Enabling/Disabling Interrupts
	Slide 35: Enabling/Disabling Interrupts
	Slide 36: Enabling/Disabling Interrupts
	Slide 37: Enabling/Disabling Interrupts
	Slide 38: Enabling/Disabling Interrupts
	Slide 39: Enabling/Disabling Interrupts
	Slide 40: Enabling/Disabling Interrupts
	Slide 41: Enabling/Disabling Interrupts
	Slide 42: Enabling/Disabling Interrupts
	Slide 43: Enabling/Disabling Interrupts
	Slide 44: Enabling/Disabling Interrupts
	Slide 45: Enabling/Disabling Interrupts
	Slide 46: Enabling/Disabling Interrupts
	Slide 47: Enabling/Disabling Interrupts
	Slide 48: Enabling/Disabling Interrupts
	Slide 49: Enabling/Disabling Interrupts
	Slide 50: Enabling/Disabling Interrupts
	Slide 51: Enabling/Disabling Interrupts
	Slide 52: Enabling/Disabling Interrupts
	Slide 53: Enabling/Disabling Interrupts
	Slide 54: Enabling/Disabling Interrupts
	Slide 55: Enabling/Disabling Interrupts
	Slide 56: Interrupts
	Slide 57: Yield
	Slide 58: Plan For Today
	Slide 59: Implementing Condition Variables
	Slide 60: wait
	Slide 61: notify_one and notify_all
	Slide 62: Plan For Today
	Slide 63: assign5
	Slide 64: Plan For Today

