CS111, Lecture 21

Virtual Memory Introduction

Optional reading:
Operating Systems: Principles and Practice (2"d Edition): Chapter 8

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared,
uploaded, or distributed. (without expressed written permission)

Topic 4: Virtual Memory - How
can one set of memory be shared

among several processes? How
can the operating system manage
access to a limited amount of
system memory?

CS111 Topic 4: Virtual Memory

Virtual Memory - How can one set of memory be shared among several

processes? How can the operating system manage access to a limited amount of
system memory?

Why is answering this question important?

* We can understand one of the most “magical” responsibilities of OSes —
making one set of memory appear as several!

* Exposes challenges of allowing multiple processes to share memory while
remaining isolated

* Allows us to understand exactly what happens when a program accesses a
memory address

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

CS111 Topic 4: Virtual Memory

Virtual Dynamic
Memory Address
Introduction Translation

The Clock
Algorithm

Demand

» »

Today Lecture 22 Lecture 23 Lecture 24

Paging

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

Learning Goals

* Understand the goals of sharing memory
e Reason about the tradeoffs in implementing memory sharing mechanisms
* Understand what impact virtual memory has on our programs

Plan For Today

* Goals of sharing memory

* Single-tasking

* Load-time relocation

* Introducing virtual memory

* Dynamic address translation
e Approach #1: Base and Bound

cp -r /afs/ir/class/csl11l/lecture-code/lect21 . 6

Plan For Today

e Goals of sharing memory

cp -r /afs/ir/class/csl11l/lecture-code/lect21 . 7

Sharing Memory

So far, we’ve seen how the OS can run multiple threads or processes
concurrently by sharing CPU cores (e.g. taking turns with a single core). Another
key sharing aspect: they must share a limited amount of system memory.

Virtual memory is a
mechanism for multiple
processes to
simultaneously use system

memory.

Sharing Memory

What are our goals for sharing memory?
* Multitasking — allow multiple processes to

* Transparency — no process should need to
must run regardless of the number and/or

be memory-resident at once

<now memory is shared. Each

ocations of processes in memory.

* Isolation — processes must not be able to corrupt each other
e Efficiency (both of CPU and memory) — shouldn’t be degraded badly by sharing

To understand how we can share memory, let’s first look at what a single

process’s memory needs are.

10

* Single-tasking

Plan For Today

cp -r /afs/ir/class/csl11l/lecture-code/lect21 .

11

Single-Tasking

Let’s start with a system that can just run one user
process at a time. What does memory look like?

* A process’s memory is a collection of segments Stack

(sections) @

* Code (“text”) — program code

e Data — constants, heap

» Stack — stack frames for functions Data
e Stack grows down, heap grows up as more space is
needed Code

(for Unix/Linux — Windows essentially the same)

12

Single-Tasking

Let’s start with a system that can just run one user
process at a time. What does memory look like?

* The OS also needs memory space!
* Reserve highest memory addresses for OS

* Problem: rogue programs could mess with OS
memory, corrupt the system (addresses are all real,
not fake)

Challenge: to run multiple processes, how can we
split up memory to give each process space?

Operating
System

Stack

v
i)

Data

Code

13

Pre-virtual-memory-idea

#1: Let's reserve contiguous

blocks in memory for each
process.

Plan For Today

 Load-time relocation

cp -r /afs/ir/class/csl11l/lecture-code/lect21 . 15

Load-Time Relocation

* When a process is loaded to run, place it in a
designated memory space.

* That memory space is for everything for that process —
stack/data/code

* Interesting fact — when a program is compiled, it is
compiled assuming its memory starts at address O.
Therefore, we must update its addresses when we load
it to match its real starting address.

» Use first-fit or best-fit allocation to manage available
memory.

What are the problems
with this approach?

Operating
System

Process 3

Process 6

Process 1

16

Load-Time Relocation

What are the problems with this approach?

* No isolation — one process can corrupt another or the w0
OS

* Must decide process memory size ahead of time
* Can’t move once we load the process

* Challenges with allocating memory for new processes —
memory fragmentation

* Need to update pointers in executable before running

Operating
System

Process 3

Process 6

Process 1

17

Idea #2: Put every process in its own
isolated “virtual world” with “imaginary”
(virtual) addresses. Whenever it
accesses a virtual address, the OS will
translate it to a "real address”.
Compared to load-time relocation:
instead of translating addresses at load-
time, we translate on the fly.

Plan For Today

* Introducing virtual memory

cp -r /afs/ir/class/csl11l/lecture-code/lect21 . 19

Introducing Virtual Memory

Virtual memory is a mechanism that allows multiple processes to
simultaneously use system memory.

* Program addresses are virtual (fake) — the OS maps them to physical (real)
addresses in memory.

* The OS must keep track of virtual -> physical “translations” and translate every
memory access.

* Virtual memory gives the OS flexibility:
e Can map only needed addresses
* Can give out more memory than there really is! And if we run out of space, can
temporarily kick memory contents to disk if needed. (more later!)

* Example of virtualization — making one thing look like another, or many of
them

20

Demo: Virtual Memory
Implications

memory.c and htop

cp -r /afs/ir/class/cslll/lecture-code/lect2l . 21

Introducing Virtual Memory

Virtual memory is a mechanism that allows multiple processes to
simultaneously use system memory.

Three key questions:

* What are the benefits of the OS intercepting memory addresses?

* How does the OS translate from virtual to physical addresses?
 What are the tradeoffs in different virtual memory implementations?

22

Plan For Today

* Dynamic address translation

cp -r /afs/ir/class/csl11l/lecture-code/lect21 . 23

Dynamic Address Translation

Let’s have the OS intercept every memory reference a process makes.

* The OS can prohibit processes from accessing certain addresses (e.g. OS
memory or another process’s memory)

* Every process can now think that it is located starting at address O

* The OS will translate each process’s address to the real one it’s mapped to, and
can have different translations for each process

Problem: intercepting and translating every memory reference is expensive!
How can we do this?

Solution: hardware support

24

Dynamic Address Translation

We will add a memory management unit (MMU) in hardware that changes
addresses dynamically during every memory reference.

* Virtual address is what the program sees

* Physical address is the actual location in memory

Virtual address Physical address

data

25

Dynamic Address Translation

Key Idea: there are now two views of memory, and they can look very different:
* Virtual address space is what the program sees
* Physical address space is the actual allocation of memory

00 _Slgm
o0
Process A Virtual

Address Space Data_

00 -SlﬁC(
Process B Virtual

Address Space Dg’[a w
Code

Physical Address Space 26

Dynamic Address Translation

* Transparency — virtual addresses allow a program’s view of memory to be
different than the real view; doesn’t know its memory is e.g., split up.

* Isolation — OS intercepts memory references and can prevent rogue accesses

Key question: how does the MMU translate from a virtual address to a physical
address? We’ll see several different approaches over the next few lectures.

27

Dynamic Address Translation

Key question: how do the MMU / OS translate from virtual addresses to physical
ones? Three designs we’ll consider:

1. Base and bound
2. Multiple Segments
3. Paging

28

Plan For Today

* Dynamic address translation
* Approach #1: Base and bound

cp -r /afs/ir/class/csl11l/lecture-code/lect21 . 29

Approach #1: Base and Bound

Key Idea: Let’s use the load-time relocation idea of contiguous allocation, but
with the MMU.

* Every process’s virtual address space is mapped to a contiguous region of
physical memory.

* When a program accesses a virtual address, translate it by adding the base for
that process — the physical address its memory really starts at.
* Base = “how much must we add to the virtual addr. to get the physical addr?”

* We specify the process’s memory size by setting a bound for it; if a process
accesses an an invalid virtual address >= bound, OS triggers an error.

* Bound = “how high in the virtual address space are we allowed to use?”

* Each process has own base/bound. Stored in PCB and loaded into two

registers when running.
30

Base and Bound

bound

Stack

@ Process A
oy

Data

Code Process A base
0 : 0

Process A Virtual
Address Space Physical Address Space

31

Approach #1: Base and Bound

* “base” is physical address starting point — corresponds to virtual address O
* “bound” is one greater than the highest allowable virtual memory address

On each memory reference:
 Compare virtual address to bound, trap if >= (invalid memory reference)
e Otherwise, add base to virtual address to produce physical address

32

Approach #1: Base and Bound

Example: let’s say process A has base = 1000, bound = 5000. What happens if:
* |t accesses virtual address 60007
* |t accesses virtual address 07?

33

Approach #1: Base and Bound

Example: let’s say process A has base = 1000, bound = 5000. What happens if:
* It accesses virtual address 6000? Invalid memory reference.
* |t accesses virtual address 0? Accesses physical address 1000.

34

Approach #1: Base and Bound

Example: let’s say process B has base = 6000, bound = 2000. What happens if:
* |t accesses virtual address 60007
* |t accesses virtual address 10007

Respond on PollEV: gk
pollev.com/cs11l SEERTa

35

Process B has base = 6000, bound =2000. What happens when it accesses virtual addresses 1)
6000 and 2) 1000?

Accesses 1) physical address 12000 and 2) physical address 7000

Accesses 1) physical address 0 and 2) physical address 3000

1) Invalid memory reference and 2) physical address 7000

Gets memory errors for both references

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Process B has base = 6000, bound =2000. What happens when it accesses virtual addresses 1)
6000 and 2) 1000?

Accesses 1) physical address 12000 and 2) physical address 7000

0%
Accesses 1) physical address 0 and 2) physical address 3000

0%
@ 1) Invalid memory reference and 2) physical address 7000

0%
Gets memory errors for both references

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Process B has base = 6000, bound =2000. What happens when it accesses virtual addresses 1)
6000 and 2) 1000?

Accesses 1) physical address 12000 and 2) physical address 7000

0%
Accesses 1) physical address 0 and 2) physical address 3000

0%
@ 1) Invalid memory reference and 2) physical address 7000

0%
Gets memory errors for both references

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Approach #1: Base and Bound

Example: let’s say process B has base = 6000, bound = 2000. What happens if:
* It accesses virtual address 6000? Invalid memory reference.
* |t accesses virtual address 1000? Accesses physical address 7000.

39

Approach #1: Base and Bound

e Key idea: each process appears to have a completely private memory whose
size is determined by the bound register.

* The only physical address is in the base register, controlled by the OS. Process
sees only virtual addresses!

* OS can update a process’s base/bound if needed! E.g. it could move physical
memory to a new location or increase bound. Not possible with load-time
relocation (since program assumes addresses are fixed), but possible here
because program doesn’t have the “real” physical addresses.

40

Base and Bound — Changing Base

Changing the base means changing | _
where in physical memory it's
allocated — there’s no change to the
| virtual address space.

bound

Stack
% Process A
Data
Code Process A base
0 - 0)

Process A Virtual
Address Space Physical Address Space

bound

Base and Bound — Changing Base

Stack

Changing the base means changing
where in physical memory it's
allocated — there’s no change to the

| virtual address space.

L
1t

Process A

Data

Code

Process A Virtual
Address Space

Process Abase (O

Physical Address Space

42

Base and Bound — Changing Bound

We can make more space for the
process by changing the bound.
This lets the process use higher
bound | virtual addresses, which are now

Stack mapped to physical addresses.

L
ﬁ Process A

Data
Code

0 - Process Abase 0

Process A Virtual
Address Space Physical Address Space

43

Base and Bound — Changing Bound

We can make more space for the
process by changing the bound.
11 This lets the process use higher
virtual addresses, which are now

Stack mapped to physical addresses.

@ Process A
1r

Data
Code

0 - Process Abase 0

bound

Process A Virtual
Address Space Physical Address Space

44

Base and Bound Summary

« Must map entire virtual address

space contiguously in physical
bound ' memory.
* Move it in physical memory by
Stack modifying .the.base. |
« The base is pinned to virtual
@ . address 0. Process A
> « Make more upward space by
Data adjusting the bound
Code
0 - Process Abase 0

Process A Virtual

Address Space Physical Address Space

45

Approach #1: Base and Bound

What are some benefits of this approach?
* Inexpensive translation — just doing addition
* Doesn’t require much additional space — just per-process base + bound

* The separation between virtual and physical addresses means we can move
the physical memory location and simply update the base, or we could even
swap memory to disk and copy it back later when it’s actually needed.

What are some drawbacks of this approach?

* Must map entire virtual address space contiguously in physical memory.
* Fragmentation

* Growing can only happen upwards with the bound

* Doesn’t support read-only regions of memory within a process

46

Approach #1: Base and Bound

What are some benefits of this approach?
* Inexpensive translation — just doing addition
* Doesn’t require much additional space — just per-process base + bound

* The separation between virtual and physical addresses means we can move
the physical memory location and simply update the base, or we could even
swap memory to disk and copy it back later when it’s actually needed.

What are some drawbacks of this approach?

* Must map entire virtual address space contiguously in physical memory.
* Fragmentation

* Growing can only happen upwards with the bound

* Doesn’t support read-only regions of memory within a process

47

Base and Bound — Changing Bound

We can make more space for the
process by changing the bound.
This lets the process use higher
bound | virtual addresses, which are now

Stack mapped to physical addresses.

L
ﬁ Process A

Data
Code

0 1 Process A base ()

Process A Virtual
Address Space Physical Address Space

48

Base and Bound — Changing Bound

We can make more space for the
process by changing the bound.
11 This lets the process use higher
virtual addresses, which are now

Stack mapped to physical addresses.

@ Process A
1r

Data
Code

0 1 Process A base ()

bound

Process A Virtual
Address Space Physical Address Space

49

Base and Bound — Changing Bound

* Process can now use higher

virtual addresses, which are now
bound ' mapped to physical addresses.
 But this only grows upwards — no
Stack mechanism to grow downwards
(additionally, we can’t go below
@ L virtual address O) Process A
> « Adjusting base doesn’t grow
downwards — only changes
Data . .
physical memory location.
Code
0 : Process A base ()

Process A Virtual

Address Space Physical Address Space

50

Base and Bound — Changing Base

Changing the base means changing | _
where in physical memory it's
allocated — there’s no change to the
| virtual address space.

bound

Stack
% Process A
Data
Code Process A base
0 - 0)

Process A Virtual
Address Space Physical Address Space
51

bound

Base and Bound — Changing Base

Stack

Changing the base means changing
where in physical memory it's
allocated — there’s no change to the

| virtual address space.

L
1t

Process A

Data

Code

Process A Virtual
Address Space

Process Abase (O

Physical Address Space

52

Base and Bound — Changing Bound

Problem: hard to make use of
upward space, as we cannot move
bound || existing stack/other data up after the
program starts. E.g. array of stack
pointers would now be invalid!

Stack

@ Process A
1r

Data
Code

0 ! Process A base ()

Process A Virtual

Address Space Physical Address Space

53

Recap

* Introducing virtual memory
* Single-tasking

* Goals of sharing memory

* Load-time relocation

* Dynamic address translation
e Approach #1: Base and Bound

Next time: more about dynamic
address translation

Lecture 21 takeaway: Virtual
memory IS a mechanism that
allows multiple processes to
simultaneously use system
memory. There are two
views of memory: virtual and
physical. The hardware
MMU translates from virtual
to physical addresses. Base
and bound is one approach to
Implement virtual memory.

	Default Section
	Slide 1: CS111, Lecture 21 Virtual Memory Introduction
	Slide 2
	Slide 3: CS111 Topic 4: Virtual Memory
	Slide 4: CS111 Topic 4: Virtual Memory
	Slide 5: Learning Goals
	Slide 6: Plan For Today
	Slide 7: Plan For Today
	Slide 8: Sharing Memory
	Slide 9: Virtual memory is a mechanism for multiple processes to simultaneously use system memory.
	Slide 10: Sharing Memory
	Slide 11: Plan For Today
	Slide 12: Single-Tasking
	Slide 13: Single-Tasking
	Slide 14: Pre-virtual-memory-idea #1: Let’s reserve contiguous blocks in memory for each process.
	Slide 15: Plan For Today
	Slide 16: Load-Time Relocation
	Slide 17: Load-Time Relocation
	Slide 18: Idea #2: Put every process in its own isolated “virtual world” with “imaginary” (virtual) addresses. Whenever it accesses a virtual address, the OS will translate it to a “real address”. Compared to load-time relocation: instead of translatin
	Slide 19: Plan For Today
	Slide 20: Introducing Virtual Memory
	Slide 21: Demo: Virtual Memory Implications
	Slide 22: Introducing Virtual Memory
	Slide 23: Plan For Today
	Slide 24: Dynamic Address Translation
	Slide 25: Dynamic Address Translation
	Slide 26: Dynamic Address Translation
	Slide 27: Dynamic Address Translation
	Slide 28: Dynamic Address Translation
	Slide 29: Plan For Today
	Slide 30: Approach #1: Base and Bound
	Slide 31: Base and Bound
	Slide 32: Approach #1: Base and Bound
	Slide 33: Approach #1: Base and Bound
	Slide 34: Approach #1: Base and Bound
	Slide 35: Approach #1: Base and Bound
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Approach #1: Base and Bound
	Slide 40: Approach #1: Base and Bound
	Slide 41: Base and Bound – Changing Base
	Slide 42: Base and Bound – Changing Base
	Slide 43: Base and Bound – Changing Bound
	Slide 44: Base and Bound – Changing Bound
	Slide 45: Base and Bound Summary
	Slide 46: Approach #1: Base and Bound
	Slide 47: Approach #1: Base and Bound
	Slide 48: Base and Bound – Changing Bound
	Slide 49: Base and Bound – Changing Bound
	Slide 50: Base and Bound – Changing Bound
	Slide 51: Base and Bound – Changing Base
	Slide 52: Base and Bound – Changing Base
	Slide 53: Base and Bound – Changing Bound
	Slide 54: Recap

