CS111, Lecture 22

Dynamic Address Translation

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared, 1
uploaded, or distributed. (without expressed written permission)

CS111 Topic 4: Virtual Memory

Virtual Memory - How can one set of memory be shared among several processes?
How can the operating system manage access to a limited amount of system
memory?

Virtual
Memory

Dynamic

Address The Clock

Algorithm

Demand

»

»

Paging

Introduction Translation

Lecture 21 Today Lecture 23 Lecture 24

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

Learning Goals

* Understand the benefits of dynamic address translation

* Reason about the tradeoffs in different ways to implement dynamic address
translation

Plan For Today

* Recap: virtual memory and dynamic address translation
* Approach #2: Multiple Segments
* Approach #3: Paging

Plan For Today

* Recap: virtual memory and dynamic address translation

Virtual memory is a
mechanism for multiple
processes to
simultaneously use system

memory.

Sharing Memory

We want to allow multiple processes to simultaneously use system memory.
Our goals are:

* Multitasking — allow multiple processes to be memory-resident at once

* Transparency — no process should need to know memory is shared. Each
must run regardless of the number and/or locations of processes in memory.

* Isolation — processes must not be able to corrupt each other
* Efficiency (both of CPU and memory) — shouldn’t be degraded badly by sharing

Load-Time Relocation

* When a process is loaded to run, place it in a
designated memory space.

* That memory space is for everything for that process —
stack/data/code

* Interesting fact — when a program is compiled, it is
compiled assuming its memory starts at address O.
Therefore, we must update its addresses when we load
it to match its real starting address.

» Use first-fit or best-fit allocation to manage available
memory.

* Problems: isolation, deciding memory sizes in advance,
fragmentation, updating addresses when loading

Operating
System

Process 3

Process 6

Process 1

Dynamic Address Translation

Idea: What if, instead of letting programs use the real physical addresses, we
had them use “imaginary” addresses within their own private “virtual world”,
and have the OS translate virtual addresses to physical addresses on the fly?

* The OS can prohibit processes from accessing certain addresses (e.g. OS
memory or another process’s memory)

* Gives the OS lots of flexibility in managing memory

* Every process can now think that it is located starting at address 0 and is the
only process in memory

* The OS will translate each process’s address to the real one it’s mapped to

e As aresult, a process’s virtual address space may look very different from how
the memory is really laid out in the physical address space.

Dynamic Address Translation

We will add a memory management unit (MMU) in hardware that changes
addresses dynamically during every memory reference.

* Virtual address is what the program sees

* Physical address is the actual location in memory

Virtual address Physical address

data

10

Dynamic Address Translation

Key question: how do the MMU / OS translate from virtual addresses to physical
ones? Three designs we’ll consider:

1. Base and bound
2. Multiple Segments
3. Paging

11

Approach #1: Base and Bound

* “base” is physical address starting point — corresponds to virtual address O
* “bound” is one greater than highest allowable virtual memory address

* Each process has own base/bound. Stored in PCB and loaded into two
registers when running.

On each memory reference:

 Compare virtual address to bound, trap if >= (invalid memory reference)
e Otherwise, add base to virtual address to produce physical address

12

Approach #1: Base and Bound

e Key idea: each process appears to have a completely private memory whose
size is determined by the bound register.

* The only physical address is in the base register, controlled by the OS. Process
sees only virtual addresses!

* OS can update a process’s base/bound if needed! E.g. it could move physical
memory to a new location or increase bound.

* Benefits: inexpensive, little space needed, separation between virtual and
physical addresses.

* Drawbacks: physical space must be contiguous, fragmentation, growth only
upwards, no read-only region support

13

Base and Bound — Changing Bound

> 0]

bound

Stack

L
ﬁ Process A

Data
Code

0 | Process A base ()

Process A Virtual
Address Space Physical Address Space

Base and Bound — Changing Bound

> 0]

bound

Stack

@ Process A
1t

Data
Code

0 | Process A base ()

Process A Virtual
Address Space Physical Address Space
15

Base and Bound

One thought: Can we remove the

requirement that the virtual address

space must be mapped

bound | contiguously? Can we avoid

Stack mapping the unused space between
@ the stack and heap?

Process A
1r

Data

Code Process A base
0 : 0

Process A Virtual
Address Space Physical Address Space

16

Plan For Today

* Approach #2: Multiple Segments

17

Idea: what if we broke up
the virtual address space
Into segments and mapped
each segment
independently?

Approach #2: Multiple Segments

Key Idea: Each process is split among several variable-size areas of memory,
called segments.

* E.g. one segment for code, one segment for data/heap, one segment for stack.

* The OS maps each segment individually — each segment would have its own
base and bound, and these are stored in a segment map for that process

 Start of each segment is fixed in the virtual address space

* We can also store a protection bit for each segment; whether the process is
allowed to write to it or not in addition to reading

* Now each segment can have its own permissions, grow/shrink independently,
be swapped to disk independently, be moved independently, and even be
shared between processes (e.g. shared code).

19

0

Process A Virtual Address Space

o0

0

Process B Virtual Address Space

Multiple Segments

Data

Code

'v

Stack

4
1r

Data

Code

T

Physical Address Space
20

Approach #2: Multiple Segments

On each memory reference:
* Look up info for the segment that address is in

 Compare virtual address to that segment’s bound, trap if >= (invalid memory
reference)

* Add segment’s base to virtual address to produce physical address

Problem: how do we know which segment a virtual address is in?

21

Approach #2: Multiple Segments

Problem: how do we know which segment a virtual address is in?

One Idea: make virtual addresses such that the top bits of the address specify its
segment, and the low bits of the address specify the offset in that segment.

Segment # Offset
0x122 0x456

Virtual Address

Example: PDP-10 computer had design with 2 segments, and the most-
significant bit in addresses encoded which one was being referenced.

Another possibility: deduce from machine code instruction executing

22

Multiple Segments

* Do not need to initially map full

Stack | virtual address space, nor map it
@ contiguously.
* Instead, individually/contiguously

map each segment.
 Move an individual segment in

ﬁ physical memory by modifying its N
Data | base (pinned to that segment’s
offset 0)
 Expand an individual segment’s
Code . .
0 size by adjusting its bound.]

Process A Virtual
Address Space Physical Address Space

23

Multiple Segments — Changing A Base

data
bound t
Data
Code Process A data base _

0 0

Process A Virtual
Address Space Physical Address Space
24

Multiple Segments — Changing A Base

dat
boﬁn?j t

Process A data base

0 0

Process A Virtual
Address Space Physical Address Space
25

Multiple Segments — Changing A Bound

data

bound
Data
Code -
Process A data base

0 0

Process A Virtual
Address Space Physical Address Space
26

Approach #2: Multiple Segments

What are some benefits of this approach?

* Can move segments to compact memory and eliminate fragmentation
* Flexibility — can manage each segment independently

e Can share segments between processes

What are some drawbacks of this approach?

* Variable-length segments result in memory fragmentation — can move, but
creates friction

* Typically small number of segments

* Encoding segment + offset rigidly divides virtual addresses (how many bits for
segment vs. how many for offset?)

27

Multiple Segments — Changing A Bound

stack

bound Growing a segment upwards works | _
Stack - well for the heap, but not for the
@ stack, for the same reason as base
and bound: we can’t move existing |

stack data after the program starts.

1 s
data

bound Can we do better?
Data 7\
Code

Process A data base

0 0

Process A Virtual
Address Space Physical Address Space

28

Idea: what if we broke up

the virtual address space

not into variable-length

segments, but into fixed-
size chunks?

Plan For Today

* Approach #3: Paging

30

Approach #3: Paging

Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).

e A “page” of virtual memory maps to a “page” of physical memory. No partial
pages

31

Process A Virtual
Address Space

Physical Address Space

Process A Virtual
Address Space Physical Address Space

33

0 —— — ‘ """""""
Process A Virtual Address Space w ‘ _____________
o0 Stack \ _____________

B pay—— R T,

0 “ode Physical Address Space

Process B Virtual Address Space 34

Do not need to map each
segment contiguously. Instead,
we map just one page at a time.

« We can later map more pages
either up or down, because the
start of the segment is not
pinned to a physical address.

« We can move each page
separately in physical memory as
well.

Process A Virtual
Address Space

Physical Address Space

35

Process A Virtual
Address Space

Physical Address Space

Process A Virtual
Address Space Physical Address Space

37

Approach #3: Paging

Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).

e A “page” of virtual memory maps to a “page” of physical memory. No partial
pages

* The page number is a numerical ID for a page. We have virtual page numbers
and physical page numbers.

e A virtual address is comprised of the virtual page # and offset in that page.
* A physical address is comprised of the physical page # and offset in that page.

38

Page Maps

How do we track, for a given process, which virtual page maps to which
physical page?

Each process has a page map (“page table”) with an entry for each virtual page,

mapping it to a physical page number and other info such as a protection bit
(read-only or read-write).

The page map is stored in contiguous memory.

39

Page Map

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

An array indexed by virtual page number

means we can instantly jump to an entry
Virtual page # = index given its page number. (but it also

means we must have an entry for every

page! More later!)
40

Page Map

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0
12 bits 12 bits
Virtual page # Offset ‘ Physical page # Offset

Virtual Address Physical Address

41

Virtual Address Encodes Page + Offset

Key idea: if you pick a

page size that is a power

of the base, the upper 2000-2999
digits identify the page

#.

1000-1999 Code
E.g. base 10, say page

Slze — 103 - 1000: — 5 ¥ ¥ F § ¥ § §F §F ¥ B §F §F N ¥

0000-0999

42

Virtual Address Encodes Page + Offset

Key idea: if you pick a

page size that is a power

of the base, the upper ©x2000-0x2fff
digits identify the page

#.

ox1000-Ox1£ £+ Code
E.g. base 16, say page

Ox0000-0xofff
Virtual page # Offset

0x323 0x400
Virtual Address ©X323400 i

Page Map

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1

For 4KB pages (4096 bytes), the offset can be 0-4095. Thus,
we can store the offset in 12 bits (the amount needed to

represent any number 0-4095). 12 bits = 3 hexadecimal digits.
12 bits 12 bits

Virtual page # Offset ‘ Physical page # Offset
Virtual Address Physical Address

44

Page Map

Physical page # | WR?

Stack 12 3 1
______ @ BN 11 X X
""""""" 10 X X
I 9 X X
______________ 8 X X
—————— ‘r} S ey 7 X X
X X

_____ .Data_ — o = —
5 X X
:::::@5&@:::::7/44 : :
3 9 0
2 1 0
Process A Virtual 1 7 0
Address Space 0 5 0

Physical Address Space

45

Process A Virtual
Address Space

10

9
8
7
6
5
4
3
2
1
0

Physical page# | WR?
3 1
X X
X X
X X
X X
X X
X X
X X
2 1
9 0
1 0
7 0
5 0

Physical Address Space

46

Process A Virtual
Address Space

10

9
8
7
6
5
4
3
2
1
0

Physical page# | WR?
3 1
X X
X X
X X
X X
X X
X X
X X
2 1
9 0
1 0
7 0
5 0

Physical Address Space

47

- |
Code Physical page# | WR?
0 /12 3 1 0
Process A Virtual i; z z .

Address Space . v v Physical Address Space

8 X X

7 X X

6 X X

5 X X

4 2 1

3 9 0

2 1 0

Virtual Address 1 7 0
Ox2223 0 5 0 a8

Process A Virtual

Address Space
Virtual page # Offset
Ox2 0x223

Virtual Address
Ox2223

10

O R N W & U1 OO NN 0o L

Physical page #

3

ONIId| PO NI X[I[X[I[X]|X]|X]|X]|X

oooc>|—\><><><><><><><|—\§
~J

Physical Address Space

49

Process A Virtual

Address Space
Virtual page # Offset
0x2 0x223

Virtual Address
Ox2223

10

9
8
7
6
5
4
3
2
1
0

Physical Address Space

Physical page # Offset

2?7 2?7

Physical page# | WR?
3 1
X X
X X
X X
X X
X X
X X
X X
2 1
9 0
1 0
7 0
5 0

Physical Address

P
e o o 50

Process A Virtual

Address Space
Virtual page # Offset
0x2 0x223

Virtual Address
Ox2223

10

O R N W & U1 OO NN 0o L

Physical page #

3

Physical Address Space

Physical page # Offset

Ox1 ?2??

OIId|FP| O IN|X[I[X[X]|X]|X]|X]|X

oooo|—\><><><><><><><|—\§
~J

Physical Address
P??

51

_____ Code = . Physical page # WR?\»-‘"_____________
0 /12 3 1 0
. 11 X X
Process A Virtual 0 " »
Address Space . v v Physical Address Space
8 X X
7 X X
6 X X
5 X X
Virtual page # Offset 4 2 1 Physical page # Offset
3 9 0
0x2 0x223 ,) 5 Ox1 0x223
Virtual Address 1 7 0 Physical Addres
O0x2223 0 5 0 5

Process A Virtual

Address Space
Virtual page # Offset
0x2 0x223

Virtual Address
Ox2223

10

O R N W & U1 OO NN 0o L

Physical page #

3

“““"t} _____________
Physical Address Space

Physical page # Offset

Ox1 0x223

Physical Address

OIId|FP| O IN|X[I[X[X]|X]|X]|X]|X

oooo|—\><><><><><><><|—\§
~J

Ox1223 N

Page Map

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) ??? ???
Virtual Address Physical Address

0x3400 ?2?

54

Page Map

Index Physical page # Writeable?

0x12625
0x13241
0x256
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) ??? ???
Virtual Address Physical Address

0x3400 ?2? 55

Page Map

Index Physical page # Writeable?

0x12625
0x13241
0x256
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) 0x2342 ???
Virtual Address Physical Address

0x3400 ?2? 56

Page Map

Index Physical page # Writeable?

0x12625
0x13241
Ox256
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) 0x2342 0x400

Virtual Address
0x3400

Physical Address

57

Page Map

Index Physical page # Writeable?

0x12625
0x13241
0x256
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) 0x2342 0x400
Virtual Address Physical Address

0x3400 0x2342400 58

PollEV: What is the physical address?

Respond on PollEv:
pollev.com/cslll

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0
Virtual page # Offset Physical page # Offset
?? 2?2? > 2?? 7??
Virtual Address Physical Address

0x1456 ?2? 59

What physical address corresponds with virtual address 0x1456 in this example?

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Practice: What is the physical address?

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0
Virtual page # Offset Physical page # Offset
Ox1 0x456 | mmm) 0x13241 0x456
Virtual Address Physical Address

0x1456 0x13241456 61

Practice: What is the physical address?

Physical page # Writeable?
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

unused (16 bits)

Virtual page # (36 bits)

Offset (12 bits)

Physical page # (40 bits)

Offset (12 bits)

x86-64 with 4KB pages has 36-bit virtual page numbers and 40-bit physical page numbers.

x86-64 64-bit Virtual Address

x86-64 52-bit Physical Address

62

Each Process Has A Page Map

0

al / — T :
0 o . | —— Physical Address Space

Process B Virtual Address Space 63

How do we provide memory to a process?

* Keep a global free list of physical pages — grab the first one when we need one
» Update process page table for a virtual page to map to this physical page

In this way, we can represent a process’s segments (e.g. code, data) as a
collection of 1 or more pages, starting on any page boundary.

64

Requesting More Memory

* Stack
R A
______ ﬁZ\F .
_____ .Data_____.
T ERde T
0

Process A Virtual
Address Space Physical Address Space

65

Requesting More Memory

Process A Virtual
Address Space Physical Address Space

66

Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).

e A “page” of virtual memory maps to a “page” of physical memory. No partial
pages. No more external fragmentation! (but some internal fragmentation if
not all of a page is used).

* The page number is a numerical ID for a page. We have virtual page numbers
and physical page numbers.

* Each process has a page map (“page table”) with an entry for each virtual
page, mapping it to a physical page number and other info such as a protection
bit (read-only or read-write).

* A memory address can tell us the page number and offset within that page.

* Not all pages are mapped — unmapped pages cannot be accessed
67

On each memory reference:

* Look up info for that virtual page in the page map

e If it’s a valid virtual page number, get the physical page number it maps to, and
combine it with the specified offset to produce the physical address.

Problem #1: what about invalid page numbers? l.e. pages the process is not
using and that are not allowed to be accessed? how do we know/represent
which pages are valid or invalid?

Solution: have entries in the page map for all pages, including invalid ones. Add
an additional field marking whether it’s valid (“present”).

Problem #2: what if we run out of memory? More next time...

68

* Recap: virtual memory and dynamic Lecture 22 takeaway:

address tra ns'at'O”_ Dynamic Address translation
* Approach #2: Multiple Segments means that the OS intercepts
* Approach #3: Paging and translates each memory

access. Initial approaches to
this include base+bound per
Drocess, or expanding that to
Next time: demand paging ne base+bound per variable-
ength segment, or instead
dividing into fixed-size pages.

69

	Default Section
	Slide 1: CS111, Lecture 22 Dynamic Address Translation
	Slide 2: CS111 Topic 4: Virtual Memory
	Slide 3: Learning Goals
	Slide 4: Plan For Today
	Slide 5: Plan For Today
	Slide 6: Virtual memory is a mechanism for multiple processes to simultaneously use system memory.
	Slide 7: Sharing Memory
	Slide 8: Load-Time Relocation
	Slide 9: Dynamic Address Translation
	Slide 10: Dynamic Address Translation
	Slide 11: Dynamic Address Translation
	Slide 12: Approach #1: Base and Bound
	Slide 13: Approach #1: Base and Bound
	Slide 14: Base and Bound – Changing Bound
	Slide 15: Base and Bound – Changing Bound
	Slide 16: Base and Bound
	Slide 17: Plan For Today
	Slide 18: Idea: what if we broke up the virtual address space into segments and mapped each segment independently?
	Slide 19: Approach #2: Multiple Segments
	Slide 20: Multiple Segments
	Slide 21: Approach #2: Multiple Segments
	Slide 22: Approach #2: Multiple Segments
	Slide 23: Multiple Segments
	Slide 24: Multiple Segments – Changing A Base
	Slide 25: Multiple Segments – Changing A Base
	Slide 26: Multiple Segments – Changing A Bound
	Slide 27: Approach #2: Multiple Segments
	Slide 28: Multiple Segments – Changing A Bound
	Slide 29: Idea: what if we broke up the virtual address space not into variable-length segments, but into fixed-size chunks?
	Slide 30: Plan For Today
	Slide 31: Approach #3: Paging
	Slide 32: Paging
	Slide 33: Paging
	Slide 34: Paging
	Slide 35: Paging
	Slide 36: Paging
	Slide 37: Paging
	Slide 38: Approach #3: Paging
	Slide 39: Page Maps
	Slide 40: Page Map
	Slide 41: Page Map
	Slide 42: Virtual Address Encodes Page + Offset
	Slide 43: Virtual Address Encodes Page + Offset
	Slide 44: Page Map
	Slide 45: Page Map
	Slide 46: Page Map
	Slide 47: Page Map
	Slide 48: Page Map
	Slide 49: Page Map
	Slide 50: Page Map
	Slide 51: Page Map
	Slide 52: Page Map
	Slide 53: Page Map
	Slide 54: Page Map
	Slide 55: Page Map
	Slide 56: Page Map
	Slide 57: Page Map
	Slide 58: Page Map
	Slide 59: PollEV: What is the physical address?
	Slide 60
	Slide 61: Practice: What is the physical address?
	Slide 62: Practice: What is the physical address?
	Slide 63: Each Process Has A Page Map
	Slide 64: Paging
	Slide 65: Requesting More Memory
	Slide 66: Requesting More Memory
	Slide 67: Paging
	Slide 68: Paging
	Slide 69: Recap

