CS111, Lecture 23
Demand Paging

Optional reading:
Operating Systems: Principles and Practice (2"d Edition): Chapter 9

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared,
uploaded, or distributed. (without expressed written permission)

Key Question: what
happens when we run out
of physical pages?

CS111 Topic 4: Virtual Memory

Virtual Memory - How can one set of memory be shared among several processes?
How can the operating system manage access to a limited amount of system
memory?

Virtual
Memory

Dynamic

Address The Clock

Demand
Paging

»

»

Algorithm

Introduction Translation

Lecture 21 Lecture 22 Today Lecture 24

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

Learning Goals

* Learn more about page maps and how they help translate virtual addresses to
physical addresses

* Understand how paging allows us to swap memory contents to disk when we
need more physical pages.

* Learn about the benefits of demand paging in making memory look larger than
it really is

Plan For Today

* Recap: Base and bound, multiple segments, and paging
* Page Map Size
* Demand Paging

Plan For Today

* Recap: Base and bound, multiple segments, and paging

Dynamic Address Translation

Key question: how do the MMU / OS translate from virtual addresses to physical
ones? Three designs we’ll consider:

1. Base and bound
2. Multiple Segments
3. Paging

Approach #2: Multiple Segments

Key Idea: Each process is split among several variable-size areas of memory,
called segments.

* E.g. one segment for code, one segment for data/heap, one segment for stack.
 Start of each segment is pinned to a specific virtual address

* OS maps each segment individually — each segment has its own base and
bound, kept in a segment map for that process (segment map stored in MMU)

* Also store a protection bit for each segment: whether the process is allowed to
write to it or not in addition to reading

* Now each segment can have its own permissions, grow/shrink independently,
be swapped to disk independently, be moved independently, and even be
shared between processes (e.g. shared code).

* Top bit(s) of virtual address encode segment number, rest encode offset

0

Process A Virtual Address Space

o0

0

Process B Virtual Address Space

Multiple Segments

Data

Code

'v

Stack

4
1r

Data

Code

T

Physical Address Space
9

Multiple Segments — Changing A Bound

stack

bound - Buffer space between stack +
Stack | heap doesn’t need to be initially
@ mapped.
« Growing a segment upwards E
works well for the heap, but not
1> for the stack, for the same reason .
data ,
bound as base and bound: we can't
Data — move existing stack data after the
program starts.
 Still fragmentation problem, plus
Code . .
need to decide # bits for segment
number vs. offset.

(9]

Process A Virtual
Address Space Physical Address Space

10

Key Idea: Divide virtual and physical memory into fixed-size chunks called pages.
(Common size is 4KB pages).

e A “page” of virtual memory maps to a “page” of physical memory. No partial
pages. No more external fragmentation! (but some internal fragmentation if
not all of a page is used).

* The page number is a numerical ID for a page. We have virtual page numbers
and physical page numbers.

* Each process has a page map (“page table”) with an entry for each virtual
page, mapping it to a physical page number and other info such as a protection
bit (read-only or read-write).

* First bits of an address encode offset, rest encode (virtual or physical) page
humber

11

- * Do not need to map each b
Stack segment contiguously. Instead, | |[------------1
""" @ ST we map just one page at a time. T T T T T T T T
@ —————____] | Wecan later map more pages I
-------------- either up or down, because the .
-------------- start of the segment is not B
i 4R pinned to a physical address. TTTITTIIoTT
_____ Pata----1{ |° We can move each page D
separately in physical memoryby | |F----—---—-—--_/|
[T111Code_ 1] _ modifying the page map. SIIIIIIiii

0 0

Process A Virtual
Address Space Physical Address Space

12

Process A Virtual
Address Space

Physical Address Space

Process A Virtual
Address Space Physical Address Space

14

Page Map

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) ??? ???
Virtual Address Physical Address

0x3400 ?2?

15

Page Map

Index Physical page # Writeable?

0x12625
0x13241
0x256
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) ??? ???
Virtual Address Physical Address

0x3400 ?2? 16

Page Map

Index Physical page # Writeable?

0x12625
0x13241
0x256
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) 0x2342 ???
Virtual Address Physical Address

0x3400 ?2? 17

Page Map

Index Physical page # Writeable?

0x12625
0x13241
Ox256
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) 0x2342 0x400

Virtual Address
0x3400

Physical Address

18

Page Map

Index Physical page # Writeable?

0x12625
0x13241
0x256
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) 0x2342 0x400
Virtual Address Physical Address

0x3400 0x2342400 19

On each memory reference:

* Look up info for that virtual page in the page map

e If it’s a valid virtual page number, get the physical page number it maps to, and
combine it with the specified offset to produce the physical address.

Key Idea: to enable quick lookup, the page table is an array where the indexes
are the virtual page numbers. E.g. index 5 corresponds to virtual page 5.

* (Why not e.g. a hashmap? Not feasible at the time with hardware, plus turns
out array ends up working pretty well with optimizations)

This means we must have an entry for every virtual page, even invalid ones —
because missing entries would mean indexes wouldn’t line up anymore. 20

Plan For Today

* Page Map Size

21

Page map has entries for all pages, including invalid ones. We will add an
additional field marking whether it’s valid (“present”).

22

Page Map

Index Physical page # Writeable? | Present?

3 O0x2342 1 1
2 XXX X 0
1 0x13241 0 1
0 XXX X 0

23

Page Map

Index Physical page # Writeable? | Present?
3 0x2342 1 1
2
0

If there is a memory access in virtual pages 0 or 2 here, it
would trap due to an invalid memory reference.

24

Page Map Size

Problem: how big is a single process’s page map? An entry for every page?
Example with x86-64: 36-bit virtual page numbers, 8-byte map entries

How many possible virtual page #ts? 23°

23%virtual pages x 8 bytes per page entry = ???

25

Page Map Size

Problem: how big is a single process’s page map? An entry for every page?
Example with x86-64: 36-bit virtual page numbers, 8-byte map entries

How many possible virtual page #s? 23°

236 virtual pages x 8 bytes per page entry = 512GB!! (23° bytes)

Plus, most processes are small, so most pages will be “not present”. And even
large processes use their address space sparsely (e.g. code at bottom, stack at

top).

26

Page Map Size

x86-64 solution: represent the page map as a multi-level tree.

* Top level of page map has entries for ranges of virtual pages (0 to 2%7-1, 2%’ to
2 ¥ 227 -1, etc.). Only if any pages in that range are present does that entry
point to a lower level in the tree (saves space). We store the location of the
top level to access it.

* Lower levels follow a similar structure — entry for ranges of pages, and they
only map to something if at least one of the pages in that range is present.

* The lowest level of the tree contains actual physical page numbers.

27

Page Map Tree Structure

Tree, level 4:

Virtual page range Pointer Present?
(3*227)to (4 * 227 -1) 0x2342120 1
(2*227)to (3 * 227 -1) XXXXXX 0

227 to (2 * 227 - 1) XXXXXX 0
0 to (2% - 1) 0x423f3210 1

28

Page Map Tree Structure

Tree, level 4:

Virtual page range Pointer Present?
(3*227)to (4 * 227 -1) 0x2342120 1
(2*227)to (3 * 227 -1) XXXXXX 0

227 to (2 * 227 - 1) XXXXXX

AR

29

Page Map Tree Structure

Tree, level 3:
Virtual page range Pointer Present?
(3*2%%) to (4 *218-1) 0x1692054300 1
(2 *2%8) to (3 * 218 -1) 0x45679819f0 1
218t (2 * 218 1) XXX XXX 0
0to (218-1) XXX XXX 0

30

Page Map Tree Structure

Tree, level 3:
Virtual page range Pointer Present?
(2*2%) to (3 *218-1) 0x45679819f0 1
218 to (2 * 218 - 1) XXXXXX

Oto(21¥8-1) XXXXXX 0

31

Page Map Tree Structure

Tree, level 2:

Virtual page range Pointer Present?
(3*2°)to(4*2°-1) 0xff54210 1
(2*2%) to(3*2°-1) XXXXXX 0)

2°to (2 *2°-1) Oxff12900 1
O0to(2°-1) XXXXXX 0)

32

Page Map Tree Structure

Tree, level 2:
Virtual page range Pointer Present?
(3*2°)to(4*2°-1) 0xff54210 1
(2*2%) to(3*2°-1) XXXXXX 0)

2910 (2 * 29— 1)
0to (2°-1) XXXXXX 0

33

Page Map Tree Structure

Tree, level 1:
Index Physical page Present?
3 0x4928350 1
2 XXXXXX 0
1 0x9125010 1
0 0x9424020 1

34

Page Map Tree Structure

Tree, level 1:
Index Physical page Present?
. ouwsso | 1|
2 XXXXXX 0
1 0x9125010
0 0x9424020 1

35

Page Map Tree Structure

64-bit Virtual Address

16 9 9 9 9 12

1 \
Page Map Level 1
! \T Page Map Level 2

Page Map Level 3

ﬁage Map Level 4 40 : 12 |
Physical page # Offset

52-bit Physical Address 36

PML4 Base

On assign6, you'll implement your own virtual memory system using paging:

* You’ll intercept memory requests
* You’ll maintain a page map mapping virtual addresses to physical ones

* For our purposes, we won’t worry about page map size (will store it without
using tree structure)

37

Plan For Today

* Demand Paging

38

What should we do in our
paging design if we run out of
physical memory?

Running Out Of Memory

If memory is in high demand, we could fill up all of memory, since a process
needs all its pages in memory to run. What should we do in that case?

* Prohibit further program memory requests until some is freed? Not ideal.

* Another idea — what if we kicked out a page and used that page? We could
save a page to disk, use the page for new data, and load the old data back in to

a physical page later if it’s still needed.

We can make physical memory look larger than it is!

40

Demand Paging

Overall goal: allow programs to run without all their information in memory.
* Keep in memory the information that is being used.

» Keep unused information on disk in paging file (also called backing store, or
swap space)

* Move information back and forth as needed.

* Locality — most programs spend most of their time using a small fraction of
their code and data

ldeally: we have a memory system with the performance of main memory and
the cost/capacity of disk!

41

Demand Paging — 2 Key Questions

1. What is the process for kicking a page out to disk?
2. How do we choose which page to kick out? (next time!)

42

Demand Paging — 2 Key Questions

1. What is the process for kicking a page out to disk?
2. How do we choose which page to kick out? (next time!)

43

Demand Paging

mij 0

Data Physical Address Space
0 Code Physical page# | WR? | PR?
Process A Virtual ! 0 il
6 X X 0
Address Space
5 X X 0
4 X X 0
3 X X 0
2 X X 0
1 2 0 1
0 1 0 1 »

Demand Paging

€3 0

Data Physical Address Space
Code Physical page# | WR? | PR?

0

Process A Virtual
Address Space

1. Pick an existing
physical page and swap
it to disk.

O = N W H~H U1 O

R |RP|O| O0O|O0O|OC|O|F

R N X | X]| X | X | X
O |1 O | X | X | X[X|X|E

46

Demand Paging

_____ D ; \

Data Physical Address Space
Code Physical page# | WR? | PR?

0

Process A Virtual
Address Space

Disk Swap
Space

1. Pick an existing
physical page and swap
it to disk, mark not
present.

Process A, vpage #6@

O L N W b U OO N
R N X | X]| X | X | X

O |1 O | X | X | X[X|X|E
O |l r| OOl OC|O|O| K

Demand Paging

mij 0

Data Physical Address Space
Code Physical page# | WR? | PR?

0

Process A Virtual
Address Space

Disk Swap
Space

Process A, vpage #6@

2. Map this physical
page to the new virtual
page.

O r N W o U1 O
RN X | X[X|[X|[RF

O |0 | X | X | X|[X|Fr|[F
O|lr|O|O|OC|OC|FRL|[F

Demand Paging

mij 0

Data Physical Address Space
Physical page # | WR? | PR?

0

Process A Virtual
Address Space

Disk Swap
Space

1. We look in the page
map and see it’s not
present.

Process A, vpage #6@

O r N W N U1 O N
RN X|IX[X]|X]| KR

OO | X | X | X|[X]|kRL,|F
OoO|lr|lO|lO|lOC|O|F| K

Demand Paging

mij 0

Data Physical Address Space
Physical page # | WR? | PR?

0

Process A Virtual
Address Space
2. But it is stored in disk
swap, so we load it back
in (kicking another page if
needed).

Disk Swap
Space

Process A, vpage #6@

O - N W N U1 O N
RN X|IX[X]|X]| KR

OO | X | X | X|[X]|kRL,|F
OoO|lr|lO|lO|lOC|O|F| K

Demand Paging

mij 0

Data Physical Address Space
Physical page # | WR? | PR?

0

Process A Virtual
Address Space
2. But it is stored in disk
swap, so we load it back
in (kicking another page if
needed).

Disk Swap
Space

Process A, vpage #
Process A, vpage #6@

O - N W N U1 O N
RN X|IX[X]|X]| KR

OO | X | X | X|[X]|kRL,|F
Ol r|O|lO|lOC|OC| L, | O

Demand Paging

0
Physical Address Space

Physical page #
0

Process A Virtual
Address Space
2. But it is stored in disk
swap, so we load it back
in (kicking another page if
needed).

Disk Swap
Space

Process A, vpage #

O = N W H~ U1 O

PR |l P,P|O|lOC|OC|[OC|(FL|O

O I NI X[X[X|X|FR
O | O X | X | X|X|kFr|FR

Demand Paging

If we need another page but memory is full:

1. Pick a page to kick out

2. Write it to disk

3. Mark the old page map entry as not present

4. Update the new page map entry to be present and map to this physical page

53

Demand Paging

If the program accesses a page that was swapped to disk:

1. Triggers a page fault (not-present page accessed)

We see disk swap contains data for this page

Get a new physical page (perhaps kicking out another one)
Load the data from disk into that page

A

Update the page map with this new mapping

We now rely on the present bit to tell us more generally if the page is present in
physical memory or not — if not, could still be a valid access if in disk swap.

54

Thrashing

Demand paging can provide big benefits — but can also run into problematic
scenarios. In the following scenario, what is a bad scenario for demand paging
for what pages this process accesses next?

Stack

= |

Data 0
Physical Address Space

Process A Virtual
Address Space

Disk Swap Space
Process A, vpage #@

Respond on PollEv: ks
pollev.com/cslll

55

Of the following options for what pages this process accesses next, which is the worst for
demand paging?

accesses the code page over and over again

accesses the code page, then the stack page, then the stack page again over and over

0%

accesses the code page, then the stack page, then the code page, then the stack page, etc.

accesses the stack page over and over again

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Thrashing

Demand paging can provide big benefits — but what potential scenario would
lead demand paging to slow the system way down?

If the pages being actively used don’t all fit in memory, the system will spend all
its time reading and writing pages to/from disk and won’t get much work done.

* Called thrashing

* The page we kick to disk wil
kick another page, which wi

* Progress of the program wil

be needed very soon, so we will bring it back and
| be needed very soon, etc....

make it look like access time of memory is as slow

as disk, rather than disk being as fast as memory. ®

* With personal computers, users can notice thrashing and kill some processes

57

Demand Paging Behaviors

Two additional details about demand paging:

 We don’t always need to write a swapped-out page to disk (e.g., read-only
code pages can always be loaded from executable)

* A page may have initial data even if it’s never been accessed before (e.g.,
initialized global variables at program start.)

58

Kinds of Pages

The pages for a process divide into three groups:

1. Read-only code pages: program code, doesn’t change

A. no need to store in swap when kicked out; can always read them from executable file
B. on first access, the program expects them to contain data

2. Initialized data pages: program data with initial values (e.g., globals)
A. save to swap since contents may have changed from initial values
B. on first access, the program expects them to contain data

3. Uninitialized data pages: e.g., stack, heap
A. save to swap as needed
B. no setinitial contents — on first access, just clear memory to all zeros

59

Assign6 Disk Swap

On assigné6:

* You'll only write to disk if a page is “dirty” (modified). Page maps contain a
dirty bit that is set whenever a page is modified.

* A page may have contents on disk from the executable or from a previous
swap —you’ll read into memory in both cases.

60

Page Fetching

Now we have a mechanism to allow programs to run without all their
information in memory. But even if there is space, when should we bring pages
into memory?

* Most modern OSes start with no pages loaded, load pages when referenced
(“demand fetching”).

* Alternative: prefetching - try to predict when pages will be needed and load
them ahead of time (requires predicting the future...)

61

Page Replacement

If we need another physical page but all memory is used, which page should we
throw out?

More next time...

62

* Recap: Base and bound, multiple | ecture 23 takeaway; We
segments, a.”d pasing can make memory appear
 Page Map Size larger than it is by swapping
* Demand Paging pages to disk when we need

more space and swapping
them back later. But
thrashing can occur when the
system spends all its time
Next time: how to choose which doing disk operations and

pages to swap to disk (the clock little time on actual work.
algorithm).

63

	Default Section
	Slide 1: CS111, Lecture 23 Demand Paging
	Slide 2: Key Question: what happens when we run out of physical pages?
	Slide 3: CS111 Topic 4: Virtual Memory
	Slide 4: Learning Goals
	Slide 5: Plan For Today
	Slide 6: Plan For Today
	Slide 7: Dynamic Address Translation
	Slide 8: Approach #2: Multiple Segments
	Slide 9: Multiple Segments
	Slide 10: Multiple Segments – Changing A Bound
	Slide 11: Paging
	Slide 12: Paging
	Slide 13: Paging
	Slide 14: Paging
	Slide 15: Page Map
	Slide 16: Page Map
	Slide 17: Page Map
	Slide 18: Page Map
	Slide 19: Page Map
	Slide 20: Paging
	Slide 21: Plan For Today
	Slide 22: Paging
	Slide 23: Page Map
	Slide 24: Page Map
	Slide 25: Page Map Size
	Slide 26: Page Map Size
	Slide 27: Page Map Size
	Slide 28: Page Map Tree Structure
	Slide 29: Page Map Tree Structure
	Slide 30: Page Map Tree Structure
	Slide 31: Page Map Tree Structure
	Slide 32: Page Map Tree Structure
	Slide 33: Page Map Tree Structure
	Slide 34: Page Map Tree Structure
	Slide 35: Page Map Tree Structure
	Slide 36: Page Map Tree Structure
	Slide 37: assign6
	Slide 38: Plan For Today
	Slide 39: What should we do in our paging design if we run out of physical memory?
	Slide 40: Running Out Of Memory
	Slide 41: Demand Paging
	Slide 42: Demand Paging – 2 Key Questions
	Slide 43: Demand Paging – 2 Key Questions
	Slide 44: Demand Paging
	Slide 46: Demand Paging
	Slide 47: Demand Paging
	Slide 48: Demand Paging
	Slide 49: Demand Paging
	Slide 50: Demand Paging
	Slide 51: Demand Paging
	Slide 52: Demand Paging
	Slide 53: Demand Paging
	Slide 54: Demand Paging
	Slide 55: Thrashing
	Slide 56
	Slide 57: Thrashing
	Slide 58: Demand Paging Behaviors
	Slide 59: Kinds of Pages
	Slide 60: Assign6 Disk Swap
	Slide 61: Page Fetching
	Slide 62: Page Replacement
	Slide 63: Recap

