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CS111, Lecture 23
Demand Paging

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 9
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Key Question: what 
happens when we run out 

of physical pages?
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CS111 Topic 4: Virtual Memory

Virtual 
Memory 

Introduction

Dynamic 
Address 

Translation

Demand 
Paging

The Clock 
Algorithm

Lecture 21 Lecture 22 Lecture 24

assign6: implement demand paging system to translate addresses and load/store 
memory contents for programs as needed.

Today

Virtual Memory - How can one set of memory be shared among several processes? 

How can the operating system manage access to a limited amount of system 

memory?
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Learning Goals

• Learn more about page maps and how they help translate virtual addresses to 
physical addresses

• Understand how paging allows us to swap memory contents to disk when we 
need more physical pages.

• Learn about the benefits of demand paging in making memory look larger than 
it really is
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Plan For Today

• Recap: Base and bound, multiple segments, and paging

• Page Map Size

• Demand Paging
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Plan For Today

• Recap: Base and bound, multiple segments, and paging

• Page Map Size

• Demand Paging
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Dynamic Address Translation

Key question: how do the MMU / OS translate from virtual addresses to physical 
ones?  Three designs we’ll consider:

1. Base and bound

2. Multiple Segments

3. Paging
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Approach #2: Multiple Segments

Key Idea: Each process is split among several variable-size areas of memory, 
called segments.

• E.g. one segment for code, one segment for data/heap, one segment for stack.

• Start of each segment is pinned to a specific virtual address

• OS maps each segment individually – each segment has its own base and 
bound, kept in a segment map for that process (segment map stored in MMU)

• Also store a protection bit for each segment: whether the process is allowed to 
write to it or not in addition to reading

• Now each segment can have its own permissions, grow/shrink independently, 
be swapped to disk independently, be moved independently, and even be 
shared between processes (e.g. shared code).

• Top bit(s) of virtual address encode segment number, rest encode offset
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Multiple Segments

Process A Virtual Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address SpaceProcess B Virtual Address Space

Code
0

∞

Data

Stack

Multiple Segments
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Multiple Segments – Changing A Bound

Process A Virtual 
Address Space

Code

0

Data

Stack

0

∞

Physical Address Space

data 

bound

Process A data base

stack 

bound • Buffer space between stack + 

heap doesn’t need to be initially 

mapped.

• Growing a segment upwards 

works well for the heap, but not 

for the stack, for the same reason 

as base and bound: we can’t 

move existing stack data after the 

program starts.

• Still fragmentation problem, plus 

need to decide # bits for segment 

number vs. offset.
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Paging

Key Idea: Divide virtual and physical memory into fixed-size chunks called pages.  
(Common size is 4KB pages).

• A “page” of virtual memory maps to a “page” of physical memory.  No partial 
pages.   No more external fragmentation! (but some internal fragmentation if 
not all of a page is used).

• The page number is a numerical ID for a page.  We have virtual page numbers 
and physical page numbers.

• Each process has a page map (“page table”) with an entry for each virtual 
page, mapping it to a physical page number and other info such as a protection 
bit (read-only or read-write).

• First bits of an address encode offset, rest encode (virtual or physical) page 
number
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Paging

Process A Virtual 
Address Space

Code

0

∞

Data

Stack

0

∞

Physical Address Space

• Do not need to map each 

segment contiguously.  Instead, 

we map just one page at a time.  

• We can later map more pages 

either up or down, because the 

start of the segment is not 

pinned to a physical address. 

• We can move each page 

separately in physical memory by 

modifying the page map.
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Paging

Process A Virtual 
Address Space

Code

0

∞

Data

Stack

0

∞

Physical Address Space
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Paging

Process A Virtual 
Address Space

Code

0

∞

Data

Stack

0

∞

Physical Address Space
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Page Map

Index Physical page # Writeable?

… … …

3 0x2342 1

2 0x12625 1

1 0x13241 0

0 0x256 0

0x3 0x400

Virtual Address

??? ???

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 ???



16

Page Map

Index Physical page # Writeable?

… … …

3 0x2342 1

2 0x12625 1

1 0x13241 0

0 0x256 0

0x3 0x400

Virtual Address Physical Address

Virtual page # Physical page #Offset Offset

0x3400

??? ???

???
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Page Map

Index Physical page # Writeable?

… … …

3 0x2342 1

2 0x12625 1

1 0x13241 0

0 0x256 0

0x3 0x400

Virtual Address

0x2342

Physical Address

Virtual page # Physical page #Offset Offset

0x3400

???

???
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Page Map

Index Physical page # Writeable?

… … …

3 0x2342 1

2 0x12625 1

1 0x13241 0

0 0x256 0

0x3 0x400

Virtual Address

0x2342 0x400

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 ???
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Page Map

Index Physical page # Writeable?

… … …

3 0x2342 1

2 0x12625 1

1 0x13241 0

0 0x256 0

0x3 0x400

Virtual Address

0x2342 0x400

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 0x2342400
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Paging

On each memory reference:

• Look up info for that virtual page in the page map

• If it’s a valid virtual page number, get the physical page number it maps to, and 
combine it with the specified offset to produce the physical address.

Key Idea: to enable quick lookup, the page table is an array where the indexes 
are the virtual page numbers.  E.g. index 5 corresponds to virtual page 5.

• (Why not e.g. a hashmap?  Not feasible at the time with hardware, plus turns 
out array ends up working pretty well with optimizations)

This means we must have an entry for every virtual page, even invalid ones – 
because missing entries would mean indexes wouldn’t line up anymore.
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Plan For Today

• Recap: Base and bound, multiple segments, and paging

• Page Map Size

• Demand Paging
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Paging

Page map has entries for all pages, including invalid ones.  We will add an 
additional field marking whether it’s valid (“present”).
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Page Map

Index Physical page # Writeable? Present?

… … … …

3 0x2342 1 1

2 XXX X 0

1 0x13241 0 1

0 XXX X 0
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Page Map

Index Physical page # Writeable? Present?

… … … …

3 0x2342 1 1

2 XXX X 0

1 0x13241 0 1

0 XXX X 0

If there is a memory access in virtual pages 0 or 2 here, it 
would trap due to an invalid memory reference.



25

Page Map Size

Problem: how big is a single process’s page map?  An entry for every page?

Example with x86-64: 36-bit virtual page numbers, 8-byte map entries

How many possible virtual page #s?  236

236 virtual pages   x   8 bytes per page entry = ???
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Page Map Size

Problem: how big is a single process’s page map?  An entry for every page?

Example with x86-64: 36-bit virtual page numbers, 8-byte map entries

How many possible virtual page #s?  236

236 virtual pages   x   8 bytes per page entry = 512GB!! (239 bytes)

Plus, most processes are small, so most pages will be “not present”.  And even 
large processes use their address space sparsely (e.g. code at bottom, stack at 
top).
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Page Map Size

x86-64 solution: represent the page map as a multi-level tree.

• Top level of page map has entries for ranges of virtual pages (0 to 227-1, 227 to 
2 * 227 – 1, etc.).  Only if any pages in that range are present does that entry 
point to a lower level in the tree (saves space).  We store the location of the 
top level to access it.

• Lower levels follow a similar structure – entry for ranges of pages, and they 
only map to something if at least one of the pages in that range is present.

• The lowest level of the tree contains actual physical page numbers.
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Page Map Tree Structure

Virtual page range Pointer Present?

… … …

(3 * 227) to (4 * 227 – 1) 0x2342120 1

(2 * 227) to (3 * 227 – 1) XXXXXX 0

227 to (2 * 227 – 1) XXXXXX 0

0 to (227 – 1) 0x423f3210 1

Tree, level 4:



29

Page Map Tree Structure

Virtual page range Pointer Present?

… … …

(3 * 227) to (4 * 227 – 1) 0x2342120 1

(2 * 227) to (3 * 227 – 1) XXXXXX 0

227 to (2 * 227 – 1) XXXXXX 0

0 to (227 – 1) 0x423f3210 1

Tree, level 4:



30

Page Map Tree Structure

Virtual page range Pointer Present?

… … …

(3 * 218) to (4 * 218 – 1) 0x1692054300 1

(2 * 218) to (3 * 218 – 1) 0x45679819f0 1

218 to (2 * 218 – 1) XXXXXX 0

0 to (218 – 1) XXXXXX 0

Tree, level 3:
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Page Map Tree Structure

Virtual page range Pointer Present?

… … …

(3 * 218) to (4 * 218 – 1) 0x1692054300 1

(2 * 218) to (3 * 218 – 1) 0x45679819f0 1

218 to (2 * 218 – 1) XXXXXX 0

0 to (218 – 1) XXXXXX 0

Tree, level 3:
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Page Map Tree Structure

Virtual page range Pointer Present?

… … …

(3 * 29) to (4 * 29 – 1) 0xff54210 1

(2 * 29) to (3 * 29 – 1) XXXXXX 0

29 to (2 * 29 – 1) 0xff12900 1

0 to (29 – 1) XXXXXX 0

Tree, level 2:
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Page Map Tree Structure

Virtual page range Pointer Present?

… … …

(3 * 29) to (4 * 29 – 1) 0xff54210 1

(2 * 29) to (3 * 29 – 1) XXXXXX 0

29 to (2 * 29 – 1) 0xff12900 1

0 to (29 – 1) XXXXXX 0

Tree, level 2:
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Page Map Tree Structure

Index Physical page Present?

… … …

3 0x4928350 1

2 XXXXXX 0

1 0x9125010 1

0 0x9424020 1

Tree, level 1:
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Page Map Tree Structure

Index Physical page Present?

… … …

3 0x4928350 1

2 XXXXXX 0

1 0x9125010 1

0 0x9424020 1

Tree, level 1:
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ory

16 9 9 9 9 12

Page Map Level 3

Physical page # Offset

64-bit Virtual Address

52-bit Physical Address

40 12

Page Map Level 2

Page Map Level 1

Page Map Tree Structure

Page Map Level 4

PML4 Base
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assign6

On assign6, you’ll implement your own virtual memory system using paging:

• You’ll intercept memory requests

• You’ll maintain a page map mapping virtual addresses to physical ones

• For our purposes, we won’t worry about page map size (will store it without 
using tree structure)
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Plan For Today

• Recap: Base and bound, multiple segments, and paging

• Page Map Size

• Demand Paging
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What should we do in our 
paging design if we run out of 

physical memory?
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Running Out Of Memory

If memory is in high demand, we could fill up all of memory, since a process 
needs all its pages in memory to run.  What should we do in that case?

• Prohibit further program memory requests until some is freed?  Not ideal.

• Another idea – what if we kicked out a page and used that page?  We could 
save a page to disk, use the page for new data, and load the old data back in to 
a physical page later if it’s still needed.

We can make physical memory look larger than it is!
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Demand Paging

Overall goal: allow programs to run without all their information in memory.

• Keep in memory the information that is being used.

• Keep unused information on disk in paging file (also called backing store, or 
swap space)

• Move information back and forth as needed.

• Locality – most programs spend most of their time using a small fraction of 
their code and data

Ideally: we have a memory system with the performance of main memory and 
the cost/capacity of disk!
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Demand Paging – 2 Key Questions

1. What is the process for kicking a page out to disk?

2. How do we choose which page to kick out? (next time!)
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Demand Paging – 2 Key Questions

1. What is the process for kicking a page out to disk?

2. How do we choose which page to kick out? (next time!)
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Demand Paging

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 X X 0

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 1
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Demand Paging

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 X X 0

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 1

1. Pick an existing 
physical page and swap 
it to disk.
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Demand Paging

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 X X 0

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

1. Pick an existing 
physical page and swap 
it to disk, mark not 
present.

Disk Swap 
Space

Process A, vpage #0
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Demand Paging

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

2. Map this physical 
page to the new virtual 
page.

Disk Swap 
Space

Process A, vpage #0
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Demand Paging

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

1. We look in the page 
map and see it’s not 
present.

Disk Swap 
Space

Process A, vpage #0
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Demand Paging

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

2. But it is stored in disk 
swap, so we load it back 
in (kicking another page if 
needed).

Disk Swap 
Space

Process A, vpage #0
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Demand Paging

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 0

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

2. But it is stored in disk 
swap, so we load it back 
in (kicking another page if 
needed).

Disk Swap 
Space

Process A, vpage #0

Process A, vpage #7
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Demand Paging

Process A Virtual 
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 0

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 0 0 1

2. But it is stored in disk 
swap, so we load it back 
in (kicking another page if 
needed).

Disk Swap 
Space

Process A, vpage #7
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Demand Paging

If we need another page but memory is full:

1. Pick a page to kick out

2. Write it to disk

3. Mark the old page map entry as not present

4. Update the new page map entry to be present and map to this physical page
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Demand Paging

If the program accesses a page that was swapped to disk:

1. Triggers a page fault (not-present page accessed)

2. We see disk swap contains data for this page

3. Get a new physical page (perhaps kicking out another one)

4. Load the data from disk into that page

5. Update the page map with this new mapping

We now rely on the present bit to tell us more generally if the page is present in 
physical memory or not – if not, could still be a valid access if in disk swap.
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Thrashing

Demand paging can provide big benefits – but can also run into problematic 
scenarios.  In the following scenario, what is a bad scenario for demand paging 
for what pages this process accesses next?

Respond on PollEv: 

pollev.com/cs111

Process A Virtual 
Address Space

Code
0

Data

Stack

0

Physical Address Space

Disk Swap Space
Process A, vpage #1

Process A, vpage #0
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Thrashing

Demand paging can provide big benefits – but what potential scenario would 
lead demand paging to slow the system way down?

If the pages being actively used don’t all fit in memory, the system will spend all 
its time reading and writing pages to/from disk and won’t get much work done.

• Called thrashing

• The page we kick to disk will be needed very soon, so we will bring it back and 
kick another page, which will be needed very soon, etc….

• Progress of the program will make it look like access time of memory is as slow 
as disk, rather than disk being as fast as memory.  

• With personal computers, users can notice thrashing and kill some processes
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Demand Paging Behaviors

Two additional details about demand paging:

• We don’t always need to write a swapped-out page to disk (e.g., read-only 
code pages can always be loaded from executable)

• A page may have initial data even if it’s never been accessed before (e.g., 
initialized global variables at program start.)
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Kinds of Pages

The pages for a process divide into three groups:

1. Read-only code pages: program code, doesn’t change
A. no need to store in swap when kicked out; can always read them from executable file

B. on first access, the program expects them to contain data

2. Initialized data pages: program data with initial values (e.g., globals)
A. save to swap since contents may have changed from initial values

B. on first access, the program expects them to contain data

3. Uninitialized data pages: e.g., stack, heap
A. save to swap as needed

B. no set initial contents – on first access, just clear memory to all zeros
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Assign6 Disk Swap

On assign6:

• You’ll only write to disk if a page is “dirty” (modified).  Page maps contain a 
dirty bit that is set whenever a page is modified.

• A page may have contents on disk from the executable or from a previous 
swap – you’ll read into memory in both cases.
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Page Fetching

Now we have a mechanism to allow programs to run without all their 
information in memory.  But even if there is space, when should we bring pages 
into memory?

• Most modern OSes start with no pages loaded, load pages when referenced 
(“demand fetching”).

• Alternative: prefetching - try to predict when pages will be needed and load 
them ahead of time (requires predicting the future…)
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Page Replacement

If we need another physical page but all memory is used, which page should we 
throw out?

More next time…
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Recap

• Recap: Base and bound, multiple 
segments, and paging

• Page Map Size

• Demand Paging

Next time: how to choose which 
pages to swap to disk (the clock 
algorithm).

Lecture 23 takeaway: We 

can make memory appear 

larger than it is by swapping 

pages to disk when we need 

more space and swapping 

them back later.  But 

thrashing can occur when the 

system spends all its time 

doing disk operations and 

little time on actual work.
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