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CS111, Lecture 24
The Clock Algorithm

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 9
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Today: if we need to kick out a 
page, which one do we pick?
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CS111 Topic 4: Virtual Memory

Virtual 
Memory 

Introduction

Dynamic 
Address 

Translation

Demand 
Paging

The Clock 
Algorithm

Lecture 21 Lecture 22 Today

assign6: implement demand paging system to translate addresses and load/store 
memory contents for programs as needed.

Lecture 23

Virtual Memory - How can one set of memory be shared among several processes? 

How can the operating system manage access to a limited amount of system 

memory?
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Learning Goals

• Learn about tradeoffs in approaches for choosing pages to kick out of memory

• Walk through the implementation of the clock algorithm, one algorithm for 
choosing which page to throw out
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Plan For Today

• Recap: Demand Paging

• The Clock Algorithm

• What about when the OS Runs?

• Virtual Memory summary
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Plan For Today

• Recap: Demand Paging

• The Clock Algorithm

• What about when the OS runs?

• Virtual Memory summary
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Demand Paging

If memory is in high demand, we could fill up all of memory, since a process 
needs all its pages in memory to run.  What should we do in that case?

• Prohibit further program memory requests?  Not ideal.

• Another idea – what if we kicked out a page and used that page?  We could 
save a page to disk, use the page for new data, and load the old data back in to 
a physical page later if it’s still needed.

Overall goal: make physical memory look larger than it is.
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Demand Paging

If we need another page but memory is full:

1. Pick a page to kick out

2. Write it to disk

3. Mark the old page map entry as not present

4. Update the new page map entry to be present and map to this physical page
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Demand Paging

If the program accesses a page that was swapped to disk:

1. Triggers a page fault (not-present page accessed)

2. We see disk swap contains data for this page

3. Get a new physical page (perhaps kicking out another one)

4. Load the data from disk into that page

5. Update the page map with this new mapping
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Thrashing

Demand paging can provide big benefits – but we can encounter thrashing; 
when the pages being actively used don’t all fit in memory, and the system will 
spend all its time reading and writing pages to/from disk and won’t get much 
work done.

• The page we kick to disk will be needed very soon, so we will bring it back and 
kick another page, which will be needed very soon, etc….

• Progress of the program will make it look like access time of memory is as slow 
as disk, rather than disks being as fast as memory.  

• With personal computers, users can notice thrashing and kill some processes
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Page Fetching

Now we have a mechanism to allow programs to run without all their 
information in memory.  But even if there is space, when should we bring pages 
into memory?

• Most modern OSes start with no pages loaded, load pages when referenced 
(“demand fetching”).

• Alternative: prefetching - try to predict when pages will be needed and load 
them ahead of time (requires predicting the future…)
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Demand Paging Behaviors

Two additional details about demand paging:

• We don’t always need to write a swapped-out page to disk (e.g., read-only 
code pages can always be loaded from executable)

• A page may have initial data even if it’s never been accessed before (e.g., 
initialized global variables at program start.)

The pages for a process divide into three groups:

1. Read-only code pages: program code

2. Initialized data pages: program data with initial values (e.g., globals)

3. Uninitialized data pages: e.g., stack, heap
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Demand Paging Behaviors

Detail #1: we don’t always need to write a swapped-out page to disk (e.g., read-
only code pages can always be loaded from executable).

1. Read-only code pages: program code, doesn’t change – no need to store in 
swap, can re-read from executable

2. Initialized data pages: program data with initial values (e.g., globals) – save 
to swap since contents may have changed

3. Uninitialized data pages: e.g., stack, heap – save to swap as needed
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Demand Paging Behaviors

Detail #2: a page may have initial data even if it’s never been accessed before 
(e.g., initialized global variables at program start.)

1. Read-only code pages: program code – on first access, expected to have 
data

2. Initialized data pages: program data with initial values (e.g., globals) – on 
first access, expected to have data

3. Uninitialized data pages: e.g., stack, heap – no set initial contents, on first 
access, clear to all 0s



15

Plan For Today

• Recap: Demand Paging

• The Clock Algorithm

• What about when the OS runs?

• Virtual Memory summary
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Page Replacement

If we need another physical page but all memory is used, which page should we 
throw out?  How do we pick?

• Random? (works surprisingly well!)

• FIFO? (throw out page that’s been in memory the longest) – fairness

• Would be nice if we could pick page whose next access is farthest in the future, 
but we’d need to predict the future…

• LRU (least-recently-used)? Replace page that was accessed the longest time 
ago.
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Page Replacement

If we need another physical page but all memory is used, which page should we 
throw out?  How do we pick?

• Random? (works surprisingly well!)

• FIFO? (throw out page that’s been in memory the longest) – fairness

• Would be nice if we could pick page whose next access is farthest in the future, 
but we’d need to predict the future…

• LRU (least-recently-used)? Replace page that was accessed the longest time 
ago.
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Least-Recently-Used

How could we know which page was the least-recently used?

• Store clock time for each page on each reference?

• Scan all pages to find oldest one?

Alternative: just find an old page, not necessarily the oldest.

The clock algorithm is one implementation of this idea.

Clock algorithm key idea: rotate through pages until we find one that hasn’t 
been referenced since the last time we checked it.  (“second chance algorithm”)
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Clock Algorithm

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 1

0 A 0 1 1

“reference” bit

Page Map

New reference bit tracks whether a page 
has been referenced recently.

• Set to 1 whenever that page is read or 
written

• Set to 0 by clock algorithm if it considered 
kicking it out, but will instead circle back 
again next time

The clock algorithm cycles through pages 
(looping back around over time – may be 
run multiple times) until it chooses a page to 
kick out.
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 1

0 A 0 1 1

“reference” bit

Physical Pages Page Map

Let’s say the system looks as 
follows, and a program 

requests mapping page 5, 
but we have no more 

physical pages.  This triggers 
the clock algorithm.
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 1

0 A 0 1 1

“reference” bit

Physical Pages Page Map

Clock algorithm starts 
where it left off the 

previous time it was run 
(or just at the beginning 

the first time)
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 1

0 A 0 1 1

Was this page accessed 
recently (reference = 1)?  

If so, set reference = 0 and 
continue.

“We’ll leave this page 
for now – but if we 
come back and it’s 
still unused, we’ll kick 
it out.”

“reference” bit

Physical Pages Page Map



23

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 1

0 A 0 1 1

Was this page accessed 
recently (reference = 1)?  

If so, set reference = 0 and 
continue.

“reference” bit

Physical Pages Page Map
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 1

0 A 0 1 0

Was this page accessed 
recently (reference = 1)?  

If so, set reference = 0 and 
continue.

“reference” bit

Physical Pages Page Map
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 1

0 A 0 1 0

Was this page accessed 
recently (reference = 1)?  

If so, set reference = 0 and 
continue.

“reference” bit

Physical Pages Page Map
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 0

0 A 0 1 0

Was this page accessed 
recently (reference = 1)?  

If so, set reference = 0 and 
continue.

“reference” bit

Physical Pages Page Map
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 0

0 A 0 1 0

Was this page accessed 
recently (reference = 1)?  
If not, this is the one we 

should remove.

“This page hasn’t 
been used ‘recently’ - 
let’s remove it.

“reference” bit

Physical Pages Page Map
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 0

0 A 0 1 0

“reference” bit

Physical Pages Page Map

Was this page accessed 
recently (reference = 1)?  
If not, this is the one we 

should remove.

“This page hasn’t 
been used ‘recently’ - 
let’s remove it.
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 0

0 A 0 1 0

Now the clock algorithm 
stops, and we remember 
the position of the hand 

for next time it runs.

“reference” bit

Physical Pages Page Map
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 1

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 0

0 A 0 1 0

In the meantime, the 
program resumes running, 
and a long time could pass 
between runs of the clock 

algorithm.  During that 
time, pages could be 
accessed, meaning 

reference bits may change.

“reference” bit

Physical Pages Page Map
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

“reference” bit

Physical Pages Page Map

In the meantime, the 
program resumes running, 
and a long time could pass 
between runs of the clock 

algorithm.  During that 
time, pages could be 
accessed, meaning 

reference bits may change.
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

Let’s say the program now 
requests mapping page 4.

“reference” bit

Physical Pages Page Map
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

Was this page accessed 
recently (reference = 1)?  

If so, set reference = 0 and 
continue.

“reference” bit

Physical Pages Page Map
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 0

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

Was this page accessed 
recently (reference = 1)?  

If so, set reference = 0 and 
continue.

“reference” bit

Physical Pages Page Map
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Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 0

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

Clock Algorithm

A

B

C

D

E

Was this page accessed 
recently (reference = 1)?  

If so, set reference = 0 and 
continue.

“reference” bit

Physical Pages Page Map
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Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

Clock Algorithm

A

B

C

D

E

Was this page accessed 
recently (reference = 1)?  

If so, set reference = 0 and 
continue.

“reference” bit

Physical Pages Page Map
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Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 C 1 1 1

4 X X 0 X

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 A 0 1 0

Clock Algorithm

A

B

C

D

E

Was this page accessed 
recently (reference = 1)?  
If not, this is the one we 

should remove.

“reference” bit

Physical Pages Page Map

“This page hasn’t 
been used ‘recently’ - 
let’s remove it.
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 C 1 1 1

4 A 1 1 1

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 X X 0 X

“reference” bit

Physical Pages Page Map

Was this page accessed 
recently (reference = 1)?  
If not, this is the one we 

should remove.

“This page hasn’t 
been used ‘recently’ - 
let’s remove it.
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 C 1 1 1

4 A 1 1 1

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 X X 0 X

Now the clock algorithm 
stops, and we remember 
the position of the hand 

for next time it runs.

“reference” bit

Physical Pages Page Map
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Clock Algorithm Summary

• We add a reference bit: set whenever a page is read or written
• Set to 1 whenever that page is read or written

• Set to 0 if clock algorithm considers kicking it out, but instead circles back later

• When physical memory is full and we need to choose a page to remove, run the 
clock algorithm.

• Clock hand “sweeps” over pages, rotating back to start if reaching the end.

• Every time the hand visits a page, we ask: “Has this page been referenced since 
the last time the clock hand swept over it?”
• If YES (reference = 1): mark it as not referenced, and advance clock hand (“sweep”)

• If NO (reference = 0): choose it for removal, advance clock hand, stop clock algorithm

• The clock hand position is saved for the next time the algorithm runs

• “Second chance” algorithm – reference bit = “# of free passes left”

• Needs mechanism to map from physical pages back to virtual pages
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 C 1 1 1

4 A 1 1 1

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 X X 0 X

Let’s say we have a new 
setup, and the clock hand 
starts at C.  Which page 
will the clock algorithm 

choose to reuse when run 
next?

“reference” bit

Physical Pages Page Map

Respond on PollEv: 

pollev.com/cs111
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Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 C 1 1 1

4 A 1 1 1

3 X X 0 X

2 X X 0 X

1 B 0 1 1

0 X X 0 X

“reference” bit

Physical Pages Page Map

Let’s say we have a new 
setup, and the clock hand 
starts at C.  Which page 
will the clock algorithm 

choose to reuse when run 
next?
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Page Replacement

How does page replacement work if there are multiple processes running?

• Per-process replacement: each process has separate pool of physical pages, 
and a page fault in a process can only replace one of its own pages.  But how 
many physical pages should each process get?

• Global replacement (most common): all pages from all processes in single 
replacement pool.  A page fault in one process can kick out a page in another 
process.
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Plan For Today

• Recap: Demand Paging

• The Clock Algorithm

• What about when the OS runs?

• Virtual Memory summary
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OS Execution

How does virtual memory work when the OS runs?  

Challenge: whenever a process makes a system call, any address parameters are 
virtual addresses, and the OS may need to access data from the process’s virtual 
address space.

• One option: the OS runs “unmapped” - it works directly with physical memory 
(no virtual->physical mappings).  But then it must do any virtual address 
translations itself.

• Another (most common in modern systems) option: the OS runs mapped in 
every process’s virtual address space.  Then it piggybacks on automatic MMU 
translation.
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OS and User in Same Address Space

0

∞
Operating

System

Code

Data

Stack

Process 1

Operating

System

Code

Data

Stack

Process 2

OS in all

Address

Spaces
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OS Execution

How does virtual memory work when the OS runs?  

OS has space in every process’s virtual address space.  Not a duplicate of OS; 
every virtual space could map to same physical memory.

Problem: don’t want user program accessing OS pages.

Solution: new bit in page table that marks kernel-only pages.  When in user 
mode, not accessible, but accessible when OS is running.
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Plan For Today

• Recap: Demand Paging

• More Demand Paging Details

• The Clock Algorithm

• What about when the OS runs?

• Virtual Memory summary
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Virtual Memory

• Virtual memory is an example of “OS magic” – very powerful mechanism

• Virtualization: making one thing look like another – separation between 
appearance and reality

• OS can manage physical memory how it wants (e.g. swap to disk), invisible to 
user programs

Goals:

• Multitasking – allow multiple processes to be memory-resident at once

• Transparency – no process should need to know memory is shared.   Each 
must run regardless of the number and/or locations of processes in memory.

• Isolation – processes must not be able to corrupt each other

• Efficiency (both of CPU and memory) – shouldn’t be degraded badly by sharing
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CS111 Topic 4: Virtual Memory

Virtual Memory -  How can one set of memory be shared among several 
processes? How can the operating system manage access to a limited amount of 
system memory?

Why is answering this question important?

• We can understand one of the most “magical” responsibilities of OSes – 
making one set of memory appear as several!

• Exposes challenges of allowing multiple processes to share memory while 
remaining isolated

• Allows us to understand exactly what happens when a program accesses a 
memory address

assign6: implement paging/demand paging system to translate addresses and 
load/store memory contents for programs as needed.
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Recap

• Recap: Demand Paging

• The Clock Algorithm

• What about when the OS runs?

• Virtual Memory summary

Lecture 24 takeaway: There 

are many different policies to 

choose a page to kick out 

when memory is full.  The 

clock algorithm is one 

approximation of LRU to pick 

an old page to remove.
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