CS111, Lecture 24
The Clock Algorithm

Optional reading:
Operating Systems: Principles and Practice (2"d Edition): Chapter 9

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared,
uploaded, or distributed. (without expressed written permission)

Today: if we need to kick out a
page, which one do we pick?

CS111 Topic 4: Virtual Memory

Virtual Memory - How can one set of memory be shared among several processes?
How can the operating system manage access to a limited amount of system
memory?

Virtual
Memory

Dynamic

Address The Clock

Algorithm

Demand
Paging

»

»

Introduction Translation

Lecture 21 Lecture 22 Lecture 23 Today

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

Learning Goals

e Learn about tradeoffs in approaches for choosing pages to kick out of memory

* Walk through the implementation of the clock algorithm, one algorithm for
choosing which page to throw out

Plan For Today

* Recap: Demand Paging

* The Clock Algorithm

* What about when the OS Runs?
* Virtual Memory summary

Plan For Today

* Recap: Demand Paging

Demand Paging

If memory is in high demand, we could fill up all of memory, since a process
needs all its pages in memory to run. What should we do in that case?

* Prohibit further program memory requests? Not ideal.

* Another idea — what if we kicked out a page and used that page? We could
save a page to disk, use the page for new data, and load the old data back in to

a physical page later if it’s still needed.

Overall goal: make physical memory look larger than it is.

Demand Paging

If we need another page but memory is full:

1. Pick a page to kick out

2. Write it to disk

3. Mark the old page map entry as not present

4. Update the new page map entry to be present and map to this physical page

Demand Paging

If the program accesses a page that was swapped to disk:

1. Triggers a page fault (not-present page accessed)

We see disk swap contains data for this page

Get a new physical page (perhaps kicking out another one)
Load the data from disk into that page

A

Update the page map with this new mapping

Thrashing

Demand paging can provide big benefits — but we can encounter thrashing;
when the pages being actively used don’t all fit in memory, and the system will
spend all its time reading and writing pages to/from disk and won’t get much

work done.

* The page we kick to disk wil
kick another page, which wi

* Progress of the program wil

be needed very soon, so we will bring it back and
| be needed very soon, etc....

make it look like access time of memory is as slow

as disk, rather than disks being as fast as memory. ®
* With personal computers, users can notice thrashing and kill some processes

10

Page Fetching

Now we have a mechanism to allow programs to run without all their
information in memory. But even if there is space, when should we bring pages
into memory?

* Most modern OSes start with no pages loaded, load pages when referenced
(“demand fetching”).

* Alternative: prefetching - try to predict when pages will be needed and load
them ahead of time (requires predicting the future...)

11

Demand Paging Behaviors

Two additional details about demand paging:

 We don’t always need to write a swapped-out page to disk (e.g., read-only
code pages can always be loaded from executable)

* A page may have initial data even if it’s never been accessed before (e.g.,
initialized global variables at program start.)

The pages for a process divide into three groups:

1. Read-only code pages: program code

2. Initialized data pages: program data with initial values (e.g., globals)
3. Uninitialized data pages: e.g., stack, heap

12

Demand Paging Behaviors

Detail #1: we don’t always need to write a swapped-out page to disk (e.g., read-
only code pages can always be loaded from executable).

1.

Read-only code pages: program code, doesn’t change — no need to store in
swap, can re-read from executable

Initialized data pages: program data with initial values (e.g., globals) — save
to swap since contents may have changed

Uninitialized data pages: e.g., stack, heap — save to swap as needed

13

Demand Paging Behaviors

Detail #2: a page may have initial data even if it’s never been accessed before
(e.g., initialized global variables at program start.)

1.

Read-only code pages: program code — on first access, expected to have
data

Initialized data pages: program data with initial values (e.g., globals) — on
first access, expected to have data

Uninitialized data pages: e.g., stack, heap — no set initial contents, on first
access, clear to all Os

14

Plan For Today

* The Clock Algorithm

15

Page Replacement

If we need another physical page but all memory is used, which page should we
throw out? How do we pick?

 Random? (works surprisingly well!)
* FIFO? (throw out page that’s been in memory the longest) — fairness

* Would be nice if we could pick page whose next access is farthest in the future,
but we’d need to predict the future...

* LRU (least-recently-used)? Replace page that was accessed the longest time
ago.

16

Page Replacement

If we need another physical page but all memory is used, which page should we
throw out? How do we pick?

 Random? (works surprisingly well!)
* FIFO? (throw out page that’s been in memory the longest) — fairness

* Would be nice if we could pick page whose next access is farthest in the future,
but we’d need to predict the future...

* LRU (least-recently-used)? Replace page that was accessed the longest time
ago.

17

Least-Recently-Used

How could we know which page was the least-recently used?
* Store clock time for each page on each reference?
* Scan all pages to find oldest one?

Alternative: just find an old page, not necessarily the oldest.
The clock algorithm is one implementation of this idea.

Clock algorithm key idea: rotate through pages until we find one that hasn’t
been referenced since the last time we checked it. (“second chance algorithm”)

18

Clock Algorithm

New reference bit tracks whether a page
has been referenced recently.

e Set to 1 whenever that page is read or
written

e Set to 0 by clock algorithm if it considered
kicking it out, but will instead circle back
again next time

The clock algorithm cycles through pages
(looping back around over time — may be
run multiple times) until it chooses a page to
kick out.

“reference” bit —'\

Physical page #

WR?

PR?

R

E

1

1

0

D

1

1

1

X

Page Map

19

Physical Pages

Clock Algorithm

Let’s say the system looks as
follows, and a program
requests mapping page 5,
but we have no more
physical pages. This triggers
the clock algorithm.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 0
D 1 1 1
X X 0 X
X X 0 X
X X 0 X
C 1 1 0
B 0 1 1
A 0 1 1
Page Map

20

Physical Pages

—

Clock Algorithm

Clock algorithm starts
where it left off the
previous time it was run
(or just at the beginning
the first time)

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 0
D 1 1 1
X X 0 X
X X 0 X
X X 0 X
C 1 1 0
B 0 1 1
A 0 1 1
Page Map

21

Physical Pages

Clock Algorithm

Was this page accessed
¢=m recently (reference = 1)?
If so, set reference = 0 and
continue.

“We’ll leave this page
for now — but if we
come back and it’s
still unused, we’ll kick
it out.”

“reference” bit —'\

Physical page #

WR?

PR?

R

E

1

1

0

D

1

1

1

X

Page Map

22

Physical Pages

Clock Algorithm

Was this page accessed
¢=m recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 0
D 1 1 1
X X 0 X
X X 0 X
X X 0 X
C 1 1 0
B 0 1 1
A 0 1 1
Page Map

23

Physical Pages

Clock Algorithm

Was this page accessed
¢=m recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 0
D 1 1 1
X X 0 X
X X 0 X
X X 0 X
C 1 1 0
B 0 1 1
A 0 1 0
Page Map

24

Physical Pages

G

Clock Algorithm

Was this page accessed
recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 0
D 1 1 1
X X 0 X
X X 0 X
X X 0 X
C 1 1 0
B 0 1 1
A 0 1 0
Page Map

25

Physical Pages

G

Clock Algorithm

Was this page accessed
recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 0
D 1 1 1
X X 0 X
X X 0 X
X X 0 X
C 1 1 0
B 0 1 0
A 0 1 0
Page Map

26

Physical Pages

G

Clock Algorithm

Was this page accessed

recently (reference = 1)?

If not, this is the one we
should remove.

“reference” bit —'\

“This page hasn’t
been used ‘recently’ -
let’s remove it.

Physical page # WR? | PR? R
E 1 1 0
D 1 1 1
X X 0 X
X X 0 X
X X 0 X
c 1 | 1 -
B 0 1 0
A 0 1 0
Page Map

27

Physical Pages

G

Clock Algorithm

Was this page accessed

recently (reference = 1)?

If not, this is the one we
should remove.

“reference” bit —'\

“This page hasn’t
been used ‘recently’ -
let’s remove it.

Physical page # WR? | PR? R
E 1 1 0
D 1 1 1
C 1 1 1
X X 0 X
X X 0 X
X X 0 X
B 0 1 0
A 0 1 0
Page Map

28

Physical Pages

Clock Algorithm

Now the clock algorithm

stops, and we remember

the position of the hand
for next time it runs.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 0
D 1 1 1
C 1 1 1
X X 0 X
X X 0 X
X X 0 X
B 0 1 0
A 0 1 0
Page Map

29

Physical Pages

G

Clock Algorithm

In the meantime, the
program resumes running,
and a long time could pass
between runs of the clock

algorithm. During that
time, pages could be
accessed, meaning

reference bits may change.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 0
D 1 1 1
C 1 1 1
X X 0 X
X X 0 X
X X 0 X
B 0 1 0
A 0 1 0
Page Map

30

Physical Pages

G

Clock Algorithm

In the meantime, the
program resumes running,
and a long time could pass
between runs of the clock

algorithm. During that
time, pages could be
accessed, meaning

reference bits may change.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 1
D 1 1 1
C 1 1 1
X X 0 X
X X 0 X
X X 0 X
B 0 1 1
A 0 1 0
Page Map

31

Physical Pages

Clock Algorithm

Let’s say the program now
requests mapping page 4.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 1
D 1 1 1
C 1 1 1
X X 0 X
X X 0 X
X X 0 X
B 0 1 1
A 0 1 0
Page Map

32

Physical Pages

Clock Algorithm

Was this page accessed
recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 1
D 1 1 1
C 1 1 1
X X 0 X
X X 0 X
X X 0 X
B 0 1 1
A 0 1 0
Page Map

33

Physical Pages

Clock Algorithm

Was this page accessed
recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 1
D 1 1 0
C 1 1 1
X X 0 X
X X 0 X
X X 0 X
B 0 1 1
A 0 1 0
Page Map

34

Physical Pages

G

Clock Algorithm

Was this page accessed
recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 1
D 1 1 0
C 1 1 1
X X 0 X
X X 0 X
X X 0 X
B 0 1 1
A 0 1 0
Page Map

35

Physical Pages

G

Clock Algorithm

Was this page accessed
recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 0
D 1 1 0
C 1 1 1
X X 0 X
X X 0 X
X X 0 X
B 0 1 1
A 0 1 0
Page Map

36

Physical Pages

Clock Algorithm

Was this page accessed

recently (reference = 1)?

If not, this is the one we
should remove.

“reference” bit —'\

“This page hasn’t
been used ‘recently’ -
let’s remove it.

Physical page # WR? | PR? R
E 1 1 0
D 1 1 0
C 1 1 1
X X 0 X
X X 0 X
X X 0 X
B 0 1 1
A 0o | 1 -
Page Map

37

Physical Pages

Clock Algorithm

Was this page accessed

recently (reference = 1)?

If not, this is the one we
should remove.

“reference” bit —'\

“This page hasn’t
been used ‘recently’ -
let’s remove it.

Physical page # WR? | PR? R
E 1 1 0
D 1 1 0
C 1 1 1
A 1 1 1
X X 0 X
X X 0 X
B 0 1 1
X X 0 X
Page Map

38

Physical Pages

—

Clock Algorithm

Now the clock algorithm

stops, and we remember

the position of the hand
for next time it runs.

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 0
D 1 1 0
C 1 1 1
A 1 1 1
X X 0 X
X X 0 X
B 0 1 1
X X 0 X
Page Map

39

Clock Algorithm Summary

* We add a reference bit: set whenever a page is read or written

* Set to 1 whenever that page is read or written
» Set to O if clock algorithm considers kicking it out, but instead circles back later

* When physical memory is full and we need to choose a page to remove, run the
clock algorithm.

* Clock hand “sweeps” over pages, rotating back to start if reaching the end.

* Every time the hand visits a page, we ask: “Has this page been referenced since
the last time the clock hand swept over it?”

* If YES (reference = 1): mark it as not referenced, and advance clock hand (“sweep”)
* If NO (reference = 0): choose it for removal, advance clock hand, stop clock algorithm

* The clock hand position is saved for the next time the algorithm runs

* “Second chance” algorithm — reference bit = “# of free passes left”

. . . 40
e Need<s mechanism to man from nhvs<ical nace< hack to virtual nacec

Physical Pages

Clock Algorithm

Let’s say we have a new
setup, and the clock hand
starts at C. Which page
will the clock algorithm
choose to reuse when run
next?

Respond on PollEv:
pollev.com/cs1ll

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 1
D 1 1 1
C 1 1 1
A 1 1 1
X X 0 X
X X 0 X
B 0 1 1
X X 0 X
Page Map

41

Which physical page will be reused next?

Page A

Page B

Page C

Page D

Page E

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

Physical Pages

Clock Algorithm

Let’s say we have a new
setup, and the clock hand
starts at C. Which page
will the clock algorithm
choose to reuse when run
next?

“reference” bit —'\

Physical page # WR? | PR? R
E 1 1 1
D 1 1 1
C 1 1 1
A 1 1 1
X X 0 X
X X 0 X
B 0 1 1
X X 0 X
Page Map

43

Page Replacement

How does page replacement work if there are multiple processes running?

* Per-process replacement: each process has separate pool of physical pages,
and a page fault in a process can only replace one of its own pages. But how
many physical pages should each process get?

* Global replacement (most common): all pages from all processes in single
replacement pool. A page fault in one process can kick out a page in another
process.

45

Plan For Today

e What about when the OS runs?

46

How does virtual memory work when the OS runs?

Challenge: whenever a process makes a system call, any address parameters are
virtual addresses, and the OS may need to access data from the process’s virtual

address space.

* One option: the OS runs “unmapped” - it works directly with physical memory
(no virtual->physical mappings). But then it must do any virtual address
translations itself.

* Another (most common in modern systems) option: the OS runs mapped in
every process’s virtual address space. Then it piggybacks on automatic MMU
translation.

47

Operating
System

Stack

V
i)

Data

Code

Process 1

OSin all
<+— Address —
Spaces

OS and User in Same Address Space

Operating
System

Stack

V
i)

Data

Code

Process 2

48

How does virtual memory work when the OS runs?

OS has space in every process’s virtual address space. Not a duplicate of OS;
every virtual space could map to same physical memory.

Problem: don’t want user program accessing OS pages.

Solution: new bit in page table that marks kernel-only pages. When in user
mode, not accessible, but accessible when OS is running.

49

Plan For Today

 Virtual Memory summary

50

Virtual Memory

* Virtual memory is an example of “OS magic” — very powerful mechanism

* Virtualization: making one thing look like another — separation between

appearance and reality

e OS can manage physical memory how it wants (e.g. swap to disk), invisible to

user programs
Goals:
* Multitasking — allow multiple processes to

* Transparency — no process should need to
must run regardless of the number and/or

e memory-resident at once
<now memory is shared. Each

ocations of processes in memory.

* Isolation — processes must not be able to corrupt each other

* Efficiency (both of CPU and memory) — shouldn’t be degraded badly by sharing

51

CS111 Topic 4: Virtual Memory

Virtual Memory - How can one set of memory be shared among several

processes? How can the operating system manage access to a limited amount of
system memory?

Why is answering this question important?

* We can understand one of the most “magical” responsibilities of OSes —
making one set of memory appear as several!

* Exposes challenges of allowing multiple processes to share memory while
remaining isolated

* Allows us to understand exactly what happens when a program accesses a
memory address

assign6: implement paging/demand paging system to translate addresses and
load/store memory contents for programs as needed.

52

* Recap: Demand Paging Lecture 24 takeaway: There
* The Clock Algorithm are many different policies to
* What about when the OS runs? choose a page to kick out
e Virtual Memory summary when memory is full. The

clock algorithm Is one
approximation of LRU to pick
an old page to remove.

53

	Default Section
	Slide 1: CS111, Lecture 24 The Clock Algorithm
	Slide 2: Today: if we need to kick out a page, which one do we pick?
	Slide 3: CS111 Topic 4: Virtual Memory
	Slide 4: Learning Goals
	Slide 5: Plan For Today
	Slide 6: Plan For Today
	Slide 7: Demand Paging
	Slide 8: Demand Paging
	Slide 9: Demand Paging
	Slide 10: Thrashing
	Slide 11: Page Fetching
	Slide 12: Demand Paging Behaviors
	Slide 13: Demand Paging Behaviors
	Slide 14: Demand Paging Behaviors
	Slide 15: Plan For Today
	Slide 16: Page Replacement
	Slide 17: Page Replacement
	Slide 18: Least-Recently-Used
	Slide 19: Clock Algorithm
	Slide 20: Clock Algorithm
	Slide 21: Clock Algorithm
	Slide 22: Clock Algorithm
	Slide 23: Clock Algorithm
	Slide 24: Clock Algorithm
	Slide 25: Clock Algorithm
	Slide 26: Clock Algorithm
	Slide 27: Clock Algorithm
	Slide 28: Clock Algorithm
	Slide 29: Clock Algorithm
	Slide 30: Clock Algorithm
	Slide 31: Clock Algorithm
	Slide 32: Clock Algorithm
	Slide 33: Clock Algorithm
	Slide 34: Clock Algorithm
	Slide 35: Clock Algorithm
	Slide 36: Clock Algorithm
	Slide 37: Clock Algorithm
	Slide 38: Clock Algorithm
	Slide 39: Clock Algorithm
	Slide 40: Clock Algorithm Summary
	Slide 41: Clock Algorithm
	Slide 42
	Slide 43: Clock Algorithm
	Slide 45: Page Replacement
	Slide 46: Plan For Today
	Slide 47: OS Execution
	Slide 48: OS and User in Same Address Space
	Slide 49: OS Execution
	Slide 50: Plan For Today
	Slide 51: Virtual Memory
	Slide 52: CS111 Topic 4: Virtual Memory
	Slide 53: Recap

