
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 25
Modern Technologies and OSes

2

Key question: How do hardware
advances impact the design of operating
systems?

3

CS111 Topic 4: Virtual Memory

Modern Technologies and OSes - How do hardware advances impact the design
of operating systems?

Why is answering this question important?

• Understand the full impact and utility of modern technologies we take for
granted

• We can better understand the interplay between technology and OSes: OSes
are at the hardware-software boundary

4

Learning Goals

• Learn about multicore CPUs and how they change scheduling and lock
implementations

• Understand the benefits and drawbacks of flash storage and how flash storage
can impact filesystem design

5

Plan For Today

• Example 1: Multicore CPUs

• Example 2: Flash Storage

6

Plan For Today

• Example 1: Multicore CPUs
• Multicore scheduling

• Multicore locks

• Example 2: Flash Storage

7

Multicore CPUs

• True multitasking: multiple cores let us run multiple threads simultaneously

• Starting mid-2000s, multicore processors more common in consumer devices

• OS manages these cores; new challenges!

8

Multicore CPUs

• Most modern consumer devices (phones, tablets, PCs) have
multiple cores. Examples:

• Latest iPhone processors have 6 cores

• Latest Snapdragon smartphone processors (common for Android
devices) have 8 cores

• Latest Intel processors have up to 24 cores

• Now more common to have different types of cores; e.g.
“performance” and “efficiency”:

• less-intensive tasks run on efficiency cores; more power-efficient

• More intensive tasks run on performance cores; better performance

• Apple, Intel + Qualcomm (major processor manufacturers) use this
approach (Qualcomm at one point had 3 types of cores)

• E.g. iPhone 16 has 2 P-cores, 4 E-cores, one Intel Core Ultra laptop
chips have 4 P-cores, 4 E-cores

Picture of a snapdragon processor

Picture of Apple A16 processor

Picture of Intel core i7, i9 and i5 processor

https://arstechnica.com/gadgets/2024/10/qualcomm-brings-laptop-class-cpu-cores-to-phones-with-snapdragon-8-elite/
https://www.intel.com/content/www/us/en/products/details/processors/core-ultra.html
https://developer.apple.com/news/?id=vk3m204o
https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html
https://arstechnica.com/gadgets/2024/10/qualcomm-brings-laptop-class-cpu-cores-to-phones-with-snapdragon-8-elite/
https://en.wikipedia.org/wiki/Qualcomm_Snapdragon
https://www.youtube.com/live/ux6zXguiqxM?si=NKMN4oNSLOs5zba3&t=4651
https://www.intel.com/content/www/us/en/newsroom/news/intel-core-14th-gen-desktop-processors.html

9

Aside: Other Hardware

• GPU is in charge of graphics

• Newer Development: NPU (“Neural Processing Unit”) / ”Neural Engine”
powers machine learning / AI tasks

10

Multicore Challenges

OS management of multiple cores surfaces new challenges:

• Example: how does scheduling work with multiple CPUs?

• Example: how can we implement mutexes where there are multiple CPUs?

11

Plan For Today

• Example 1: Multicore CPUs
• Multicore scheduling

• Multicore locks

• Example 2: Flash Storage

12

Scheduling

Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads).

Previously: First-Come-First-Serve, Round-Robin, SRPT, Priority-Based

What about when we have multiple cores to schedule threads on? (assume all
cores equal)

13

Multicore Scheduling

Initial idea: one ready queue shared by k cores

• Share ready queue data structure across cores, lock to synchronize access

• One dispatcher per core

• Separate timer interrupts for each core

• Run the k highest-priority threads on the k cores

• When a new thread is marked “ready”, compare its priority against lowest-
priority running thread, preempt if new thread has higher priority.

• This works fine for 2 cores but breaks down with lots more cores. What is the
main bottleneck with this approach when used with many cores?

Respond on PollEv:

pollev.com/cs111

14

15

Multicore Scheduling

The single ready queue is a huge bottleneck - cores must wait for access!

Modification: have 1 ready queue per core.

Problem: how do we balance threads across different ready queues?

One idea: “work stealing”: if one core is free, take a thread from another core’s
ready queue

• Maybe want to also do this prior to ready queue being empty? e.g. if one core
has 1 ready thread and another core has 30 ready threads, the 30 threads will
get less time than the 1 thread.

Another challenge: expensive to move a thread to another core.

16

Core Affinity

Another challenge: expensive to move a thread to another core.

• Cores have caches for data; if we move to a new core, won’t have cached data

• Multiprocessor schedulers try to keep threads on same core – “core affinity”

• Maybe better in some cases to just wait for current core instead of moving?

Tension between work stealing (want to move often) and core affinity (don’t
want to move often)

17

Gang Scheduling

How should we approach scheduling if one process has several threads?

• threads may be coordinating / exchanging info

• “gang scheduling” – run all threads together on different cores.
• Why? Thread progress may be intertwined. E.g. one thread holds lock then de-

scheduled, another runs but soon needs to wait for that same lock.

18

Multicore Scheduling

In general: these systems all have good and bad situations – e.g. Linux scheduler
had problems for many years, better now, but still some problems with load
balancing and moving threads too rapidly between cores.

19

Plan For Today

• Example 1: Multicore CPUs
• Multicore scheduling

• Multicore locks

• Example 2: Flash Storage

20

Single-Core Locks

class Lock {

 int locked = 0;

 ThreadQueue q;

};

void Lock::lock() {

 IntrGuard guard;

 if (!locked) {

 locked = 1;

 } else {

 q.add(currentThread);

 blockThread();

 }

}

void Lock::unlock() {

 IntrGuard guard;

 if (q.empty()) {

 locked = 0;

 } else {

 unblockThread(q.remove());

 }

}

So far: our Mutex implementation relied on disabling interrupts to prevent race
conditions.

21

Multicore Locks

Problem: only works with single-core processors! If multiple cores, even if
interrupts are disabled, some other thread could be running on another core.

How do we approach this on multicore systems?

• Turn off all other cores? Not a great option.

Key Idea: we must use a (small amount) of busy waiting (!!). We need a
mechanism for cores to sync up before proceeding, and setting/checking a
shared value is the only option.

• There’s no other way to synchronize with the other cores; until we have
synchronized, we can’t even put a thread to sleep

22

Single-Core Locks

class Lock {

 int locked = 0;

 ThreadQueue q;

};

void Lock::lock() {

 IntrGuard guard;

 if (!locked) {

 locked = 1;

 } else {

 q.add(currentThread);

 blockThread();

 }

}

void Lock::unlock() {

 IntrGuard guard;

 if (q.empty()) {

 locked = 0;

 } else {

 unblockThread(q.remove());

 }

}

23

Multicore Locks, V1

class Lock {

 int locked = 0;

 ThreadQueue q;

 int sync = 0;

};

void Lock::lock() {

 // try to change sync from 0 to 1

 while (true) {

 int old = sync;

 sync = 1;

 if (old == 0) break;

 }

 // we are only one proceeding now

 if (!locked) {

 locked = 1;

 sync = 0;

 } else {

 q.add(currentThread);

 sync = 0;

 blockThread();

 }

}

24

Multicore Locks, V1

class Lock {

 int locked = 0;

 ThreadQueue q;

 std::atomic<int> sync(0);

};

void Lock::lock() {

 // try to change sync from 0 to 1

 while (sync.exchange(1)) {}

 // we are only one proceeding now

 if (!locked) {

 locked = 1;

 sync = 0;

 } else {

 q.add(currentThread);

 sync = 0;

 blockThread();

 }

}

exchange: an atomic operation that reads the memory value,

replaces it with a given value, and returns the old value.

25

Multicore Locks, V1

class Lock {

 int locked = 0;

 ThreadQueue q;

 std::atomic<int> sync(0);

};

void Lock::lock() {

 // try to change sync from 0 to 1

 while (sync.exchange(1)) {}

 // we are only one proceeding now

 if (!locked) {

 locked = 1;

 sync = 0;

 } else {

 q.add(currentThread);

 sync = 0;

 blockThread();

 }

}

std::atomic is a C++

type that provides

atomic operations for its

contained data. We use

it here for the atomic

exchange operation.

26

Multicore Locks, V1

class Lock {

 int locked = 0;

 ThreadQueue q;

 std::atomic<int> sync(0);

};

void Lock::unlock() {

 // try to change sync from 0 to 1

 while (sync.exchange(1)) {}

 // we are only one proceeding now

 if (q.empty()) {

 locked = 0;

 } else {

 unblockThread(q.remove());

 }

 sync = 0;

}

exchange: an atomic operation that reads the memory value,

replaces it with a given value, and returns the old value.

27

Multicore Locks

Key idea: we’ll rely on atomic instructions provided by hardware to avoid race
conditions when we have multiple cores.

Example: exchange: atomically read memory value, replace it with a given value,
and get old value.

Additionally: single-word references and assignments (e.g., assigning ints,
pointers, chars) are atomic on almost all systems.

Busy waiting unavoidable! However, it’s very short – just long enough to
manipulate the lock structure.

28

Multicore Locks, V1

class Lock {

 int locked = 0;

 ThreadQueue q;

 std::atomic<int> sync(0);

};

void Lock::lock() {

 while (sync.exchange(1)) {}

 if (!locked) {

 locked = 1;

 sync = 0;

 } else {

 q.add(currentThread);

 sync = 0;

 blockThread();

 }

}

void Lock::unlock() {

 while (sync.exchange(1)) {};

 if (q.empty()) {

 locked = 0;

 } else {

 unblockThread(q.remove());

 }

 sync = 0;

}

29

Multicore Locks, V1

class Lock {

 int locked = 0;

 ThreadQueue q;

 std::atomic<int> sync(0);

};

void Lock::lock() {

 while (sync.exchange(1)) {}

 if (!locked) {

 locked = 1;

 sync = 0;

 } else {

 q.add(currentThread);

 sync = 0;

 blockThread();

 }

}

void Lock::unlock() {

 while (sync.exchange(1)) {};

 if (q.empty()) {

 locked = 0;

 } else {

 unblockThread(q.remove());

 }

 sync = 0;

}

Problem: there’s an air gap in between unlocking the lock

and blocking. Another thread could call unlock here,

unblocking us, and then we block forever 

30

Multicore Locks

We won’t worry about these, but there are a few more steps/tweaks needed
(specifically; tweaking how we block to fix race condition and continuing to use
IntrGuard to disable interrupts). (See optional slides at end if you’re interested!)

Key overarching ideas:

• On multicore, disabling interrupts is not sufficient to eliminate race conditions

• Instead, we must rely on brief busy-waiting and provided atomic operations
(exchange) to sync up cores before proceeding.

31

Plan For Today

• Example 1: Multicore CPUs

• Example 2: Flash Storage

32

Flash Storage

• Much faster than hard disks: no moving parts (no delays from platters/head!),
smaller, faster

• Flash storage has become more common with increase in mobile devices,
nowadays common in PCs too.

• Can buy separately, or some devices have non-removable storage (e.g., many
mobile devices)

• New opportunities and challenges with managing filesystem designs for flash -
has own quirks Picture of a Samsung 980 Pro SSD, which is a small chip/board with a connector on the right side to insert into a

computer or other device.

https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/

33

Flash Storage Quirks

Quirk #1: Writing Data: flash storage doesn’t support just writing arbitrary data
to a portion of the storage. Instead, it supports two operations that combined
allow us to write data:

• Erase: set all bits of an erase unit to 1. The storage is divided up into erase
units, typically 1-8MB big.

• Write: modify one page, can only clear bits to 0 (can specify some, not all).
The storage is also divided up into pages, now typically 4Kbytes big. Reading
data also happens in units of pages.

34

Flash Storage Quirks

Quirk #2: Wear-out: after erasing an erase unit many times, it no longer reliably
stores data (!). Typically, around 100K.

Wear Leveling: want erase units to erase at same rate everywhere (rather than
having some parts wear out before others). Ideas about moving “hot” (short-
lived) and “cold” (long-lived) data around to even out storage usage.

35

Flash Storage and Filesystem Design

• A common approach has been to abstract away these quirks and include
software in the Flash Storage that makes it look like a hard disk.

• “Flash Translation Layer” – software that manages flash device, built in to drive, typically
mimics disk interface (read/write blocks)

• OS has no visibility into erase units, etc. – looks like a disk! Virtualization.

• Advantage: use existing filesystem software

• Disadvantages: sacrifice performance, no direct access to raw hardware, unnecessary
layers / duplication

• Lots of interesting questions about what filesystems would look like if designed
with flash storage in mind, without an FTL.

• Other storage technologies in the future?

36

Recap

• Example 1: Multicore CPUs
• Multicore scheduling

• Multicore locks

• Example 2: Flash Storage

Lecture 25 takeaway:

Operating systems and

hardware changes are tightly

intertwined; multicore

processors and flash storage

provide two examples of the

impact of hardware changes

on OS implementations.

37

Extra Slides

38

Multicore Locks, V2

Somehow, we need to block and then unlock the lock??

• Key insight: we don’t need to block prior to unlocking the lock; we just need to
be marked as blocked.

• Solution (awkward): let’s change the interface of our thread
scheduler/dispatcher to allow us to separately mark a thread as blocked and
context switch. (Linux does something like this).

39

Multicore Locks, V2

class Lock {

 int locked = 0;

 ThreadQueue q;

 std::atomic<int> sync(0);

};

void Lock::lock() {

 while (sync.exchange(1)) {}

 if (!locked) {

 locked = 1;

 sync = 0;

 } else {

 q.add(currentThread);

 currentThread->state = BLOCKED;

 sync = 0;

 blockThreadIfNecessary();

 }

}

void Lock::unlock() {

 while (sync.exchange(1)) {};

 if (q.empty()) {

 locked = 0;

 } else {

 unblockThread(q.remove());

 }

 sync = 0;

}

40

Multicore Locks, Final Version

One last change – we must disable interrupts.

• E.g. if the timer fires right after we acquire the int, another thread trying to get
it would just busy wait, wasting resources.

void Lock::lock() {

 while (sync.exchange(1)) {}

 if (!locked) {

 locked = 1;

 sync = 0;

 } else {

 q.add(currentThread);

 currentThread->state = BLOCKED;

 sync = 0;

 blockThreadIfNecessary();

 }

}

41

Multicore Locks, Final Version

class Lock {

 int locked = 0;

 ThreadQueue q;

 std::atomic<int> sync(0);

};

void Lock::lock() {

 IntrGuard guard;

 while (sync.exchange(1)) {}

 if (!locked) {

 locked = 1;

 sync = 0;

 } else {

 q.add(currentThread);

 currentThread->state = BLOCKED;

 sync = 0;

 blockThreadIfNecessary();

 }

}

void Lock::unlock() {

 IntrGuard guard;

 while (sync.exchange(1)) {};

 if (q.empty()) {

 locked = 0;

 } else {

 unblockThread(q.remove());

 }

 sync = 0;

}

	Default Section
	Slide 1: CS111, Lecture 25 Modern Technologies and OSes
	Slide 2
	Slide 3: CS111 Topic 4: Virtual Memory
	Slide 4: Learning Goals
	Slide 5: Plan For Today
	Slide 6: Plan For Today
	Slide 7: Multicore CPUs
	Slide 8: Multicore CPUs
	Slide 9: Aside: Other Hardware
	Slide 10: Multicore Challenges
	Slide 11: Plan For Today
	Slide 12: Scheduling
	Slide 13: Multicore Scheduling
	Slide 14
	Slide 15: Multicore Scheduling
	Slide 16: Core Affinity
	Slide 17: Gang Scheduling
	Slide 18: Multicore Scheduling
	Slide 19: Plan For Today
	Slide 20: Single-Core Locks
	Slide 21: Multicore Locks
	Slide 22: Single-Core Locks
	Slide 23: Multicore Locks, V1
	Slide 24: Multicore Locks, V1
	Slide 25: Multicore Locks, V1
	Slide 26: Multicore Locks, V1
	Slide 27: Multicore Locks
	Slide 28: Multicore Locks, V1
	Slide 29: Multicore Locks, V1
	Slide 30: Multicore Locks
	Slide 31: Plan For Today
	Slide 32: Flash Storage
	Slide 33: Flash Storage Quirks
	Slide 34: Flash Storage Quirks
	Slide 35: Flash Storage and Filesystem Design
	Slide 36: Recap
	Slide 37: Extra Slides
	Slide 38: Multicore Locks, V2
	Slide 39: Multicore Locks, V2
	Slide 40: Multicore Locks, Final Version
	Slide 41: Multicore Locks, Final Version

