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Modern Technologies and OSes
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Key question: How do hardware 
advances impact the design of operating 
systems?
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CS111 Topic 4: Virtual Memory

Modern Technologies and OSes - How do hardware advances impact the design 
of operating systems?

Why is answering this question important?

• Understand the full impact and utility of modern technologies we take for 
granted

• We can better understand the interplay between technology and OSes: OSes 
are at the hardware-software boundary
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Learning Goals

• Learn about multicore CPUs and how they change scheduling and lock 
implementations

• Understand the benefits and drawbacks of flash storage and how flash storage 
can impact filesystem design
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Plan For Today

• Example 1: Multicore CPUs

• Example 2: Flash Storage
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Plan For Today

• Example 1: Multicore CPUs
• Multicore scheduling

• Multicore locks

• Example 2: Flash Storage
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Multicore CPUs

• True multitasking: multiple cores let us run multiple threads simultaneously

• Starting mid-2000s, multicore processors more common in consumer devices

• OS manages these cores; new challenges!
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Multicore CPUs

• Most modern consumer devices (phones, tablets, PCs) have 
multiple cores.  Examples:

• Latest iPhone processors have 6 cores

• Latest Snapdragon smartphone processors (common for Android 
devices) have 8 cores

• Latest Intel processors have up to 24 cores

• Now more common to have different types of cores; e.g. 
“performance” and “efficiency”: 

• less-intensive tasks run on efficiency cores; more power-efficient

• More intensive tasks run on performance cores; better performance

• Apple, Intel + Qualcomm (major processor manufacturers) use this 
approach (Qualcomm at one point had 3 types of cores)

• E.g. iPhone 16 has 2 P-cores, 4 E-cores, one Intel Core Ultra laptop 
chips have 4 P-cores, 4 E-cores

Picture of a snapdragon processor

Picture of Apple A16 processor

Picture of Intel core i7, i9 and i5 processor

https://arstechnica.com/gadgets/2024/10/qualcomm-brings-laptop-class-cpu-cores-to-phones-with-snapdragon-8-elite/
https://www.intel.com/content/www/us/en/products/details/processors/core-ultra.html
https://developer.apple.com/news/?id=vk3m204o
https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html
https://arstechnica.com/gadgets/2024/10/qualcomm-brings-laptop-class-cpu-cores-to-phones-with-snapdragon-8-elite/
https://en.wikipedia.org/wiki/Qualcomm_Snapdragon
https://www.youtube.com/live/ux6zXguiqxM?si=NKMN4oNSLOs5zba3&t=4651
https://www.intel.com/content/www/us/en/newsroom/news/intel-core-14th-gen-desktop-processors.html
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Aside: Other Hardware

• GPU is in charge of graphics

• Newer Development: NPU (“Neural Processing Unit”) / ”Neural Engine” 
powers machine learning / AI tasks
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Multicore Challenges

OS management of multiple cores surfaces new challenges:

• Example: how does scheduling work with multiple CPUs?

• Example: how can we implement mutexes where there are multiple CPUs?
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Plan For Today

• Example 1: Multicore CPUs
• Multicore scheduling

• Multicore locks

• Example 2: Flash Storage
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Scheduling

Key Question: How does the operating system decide which thread to run next? 
(e.g. many ready threads).

Previously: First-Come-First-Serve, Round-Robin, SRPT, Priority-Based

What about when we have multiple cores to schedule threads on? (assume all 
cores equal)
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Multicore Scheduling

Initial idea: one ready queue shared by k cores

• Share ready queue data structure across cores, lock to synchronize access

• One dispatcher per core

• Separate timer interrupts for each core

• Run the k highest-priority threads on the k cores

• When a new thread is marked “ready”, compare its priority against lowest-
priority running thread, preempt if new thread has higher priority.

• This works fine for 2 cores but breaks down with lots more cores.  What is the 
main bottleneck with this approach when used with many cores?

Respond on PollEv: 

pollev.com/cs111



14



15

Multicore Scheduling

The single ready queue is a huge bottleneck - cores must wait for access!

Modification: have 1 ready queue per core.

Problem: how do we balance threads across different ready queues?

One idea: “work stealing”: if one core is free, take a thread from another core’s 
ready queue

• Maybe want to also do this prior to ready queue being empty?  e.g. if one core 
has 1 ready thread and another core has 30 ready threads, the 30 threads will 
get less time than the 1 thread.

Another challenge: expensive to move a thread to another core.
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Core Affinity

Another challenge: expensive to move a thread to another core.

• Cores have caches for data; if we move to a new core, won’t have cached data

• Multiprocessor schedulers try to keep threads on same core – “core affinity”

• Maybe better in some cases to just wait for current core instead of moving?

Tension between work stealing (want to move often) and core affinity (don’t 
want to move often)
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Gang Scheduling

How should we approach scheduling if one process has several threads?

• threads may be coordinating / exchanging info

• “gang scheduling” – run all threads together on different cores.  
• Why?  Thread progress may be intertwined.  E.g. one thread holds lock then de-

scheduled, another runs but soon needs to wait for that same lock.
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Multicore Scheduling

In general: these systems all have good and bad situations – e.g. Linux scheduler 
had problems for many years, better now, but still some problems with load 
balancing and moving threads too rapidly between cores.
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Plan For Today

• Example 1: Multicore CPUs
• Multicore scheduling

• Multicore locks

• Example 2: Flash Storage
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Single-Core Locks

class Lock {

    int locked = 0;

    ThreadQueue q;

};

void Lock::lock() {

    IntrGuard guard;

    if (!locked) {

        locked = 1;

    } else {

        q.add(currentThread);

        blockThread();

    }

}

void Lock::unlock() {

    IntrGuard guard;

    if (q.empty()) {

        locked = 0;

    } else {

        unblockThread(q.remove());

    }

}

So far: our Mutex implementation relied on disabling interrupts to prevent race 
conditions.
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Multicore Locks

Problem: only works with single-core processors!  If multiple cores, even if 
interrupts are disabled, some other thread could be running on another core.

How do we approach this on multicore systems?

• Turn off all other cores?  Not a great option.

Key Idea: we must use a (small amount) of busy waiting (!!).  We need a 
mechanism for cores to sync up before proceeding, and setting/checking a 
shared value is the only option.

• There’s no other way to synchronize with the other cores; until we have 
synchronized, we can’t even put a thread to sleep
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Single-Core Locks

class Lock {

    int locked = 0;

    ThreadQueue q;

};

void Lock::lock() {

    IntrGuard guard;

    if (!locked) {

        locked = 1;

    } else {

        q.add(currentThread);

        blockThread();

    }

}

void Lock::unlock() {

    IntrGuard guard;

    if (q.empty()) {

        locked = 0;

    } else {

        unblockThread(q.remove());

    }

}
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Multicore Locks, V1

class Lock {

    int locked = 0;

    ThreadQueue q;

    int sync = 0;

};

void Lock::lock() {

    // try to change sync from 0 to 1

    while (true) {

        int old = sync;

        sync = 1;

        if (old == 0) break;

    }

    // we are only one proceeding now

    if (!locked) {

        locked = 1;

        sync = 0;

    } else {

        q.add(currentThread);

        sync = 0;

        blockThread();

    }

}
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Multicore Locks, V1

class Lock {

    int locked = 0;

    ThreadQueue q;

    std::atomic<int> sync(0);

};

void Lock::lock() {

    // try to change sync from 0 to 1

    while (sync.exchange(1)) {}

    // we are only one proceeding now

    if (!locked) {

        locked = 1;

        sync = 0;

    } else {

        q.add(currentThread);

        sync = 0;

        blockThread();

    }

}

exchange: an atomic operation that reads the memory value, 

replaces it with a given value, and returns the old value.
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Multicore Locks, V1

class Lock {

    int locked = 0;

    ThreadQueue q;

    std::atomic<int> sync(0);

};

void Lock::lock() {

    // try to change sync from 0 to 1

    while (sync.exchange(1)) {}

    // we are only one proceeding now

    if (!locked) {

        locked = 1;

        sync = 0;

    } else {

        q.add(currentThread);

        sync = 0;

        blockThread();

    }

}

std::atomic is a C++ 

type that provides 

atomic operations for its 

contained data.  We use 

it here for the atomic 

exchange operation.
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Multicore Locks, V1

class Lock {

    int locked = 0;

    ThreadQueue q;

    std::atomic<int> sync(0);

};

void Lock::unlock() {

    // try to change sync from 0 to 1

    while (sync.exchange(1)) {}

    // we are only one proceeding now

    if (q.empty()) {

        locked = 0;

    } else {

        unblockThread(q.remove());

    }

    sync = 0;

}

exchange: an atomic operation that reads the memory value, 

replaces it with a given value, and returns the old value.
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Multicore Locks

Key idea: we’ll rely on atomic instructions provided by hardware to avoid race 
conditions when we have multiple cores.

Example: exchange: atomically read memory value, replace it with a given value, 
and get old value.

Additionally: single-word references and assignments (e.g., assigning ints, 
pointers, chars) are atomic on almost all systems.

Busy waiting unavoidable!  However, it’s very short – just long enough to 
manipulate the lock structure.
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Multicore Locks, V1

class Lock {

    int locked = 0;

    ThreadQueue q;

    std::atomic<int> sync(0);

};

void Lock::lock() {

    while (sync.exchange(1)) {}

    if (!locked) {

        locked = 1;

        sync = 0;

    } else {

        q.add(currentThread);

        sync = 0;

        blockThread();

    }

}

void Lock::unlock() {

    while (sync.exchange(1)) {};

    if (q.empty()) {

        locked = 0;

    } else {

        unblockThread(q.remove());

    }

    sync = 0;

}
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Multicore Locks, V1

class Lock {

    int locked = 0;

    ThreadQueue q;

    std::atomic<int> sync(0);

};

void Lock::lock() {

    while (sync.exchange(1)) {}

    if (!locked) {

        locked = 1;

        sync = 0;

    } else {

        q.add(currentThread);

        sync = 0;

        blockThread();

    }

}

void Lock::unlock() {

    while (sync.exchange(1)) {};

    if (q.empty()) {

        locked = 0;

    } else {

        unblockThread(q.remove());

    }

    sync = 0;

}

Problem: there’s an air gap in between unlocking the lock 

and blocking.  Another thread could call unlock here, 

unblocking us, and then we block forever 
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Multicore Locks

We won’t worry about these, but there are a few more steps/tweaks needed 
(specifically; tweaking how we block to fix race condition and continuing to use 
IntrGuard to disable interrupts).  (See optional slides at end if you’re interested!)

Key overarching ideas:

• On multicore, disabling interrupts is not sufficient to eliminate race conditions

• Instead, we must rely on brief busy-waiting and provided atomic operations 
(exchange) to sync up cores before proceeding.
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Plan For Today

• Example 1: Multicore CPUs

• Example 2: Flash Storage
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Flash Storage

• Much faster than hard disks: no moving parts (no delays from platters/head!), 
smaller, faster

• Flash storage has become more common with increase in mobile devices, 
nowadays common in PCs too.

• Can buy separately, or some devices have non-removable storage (e.g., many 
mobile devices)

• New opportunities and challenges with managing filesystem designs for flash - 
has own quirks Picture of a Samsung 980 Pro SSD, which is a small chip/board with a connector on the right side to insert into a 

computer or other device.

https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
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Flash Storage Quirks

Quirk #1: Writing Data: flash storage doesn’t support just writing arbitrary data 
to a portion of the storage.  Instead, it supports two operations that combined 
allow us to write data:

• Erase: set all bits of an erase unit to 1.  The storage is divided up into erase 
units, typically 1-8MB big.

• Write: modify one page, can only clear bits to 0 (can specify some, not all).  
The storage is also divided up into pages, now typically 4Kbytes big.  Reading 
data also happens in units of pages.
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Flash Storage Quirks

Quirk #2: Wear-out: after erasing an erase unit many times, it no longer reliably 
stores data (!).  Typically, around 100K.

Wear Leveling: want erase units to erase at same rate everywhere (rather than 
having some parts wear out before others).  Ideas about moving “hot” (short-
lived) and “cold” (long-lived) data around to even out storage usage.
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Flash Storage and Filesystem Design

• A common approach has been to abstract away these quirks and include 
software in the Flash Storage that makes it look like a hard disk.

• “Flash Translation Layer” – software that manages flash device, built in to drive, typically 
mimics disk interface (read/write blocks)

• OS has no visibility into erase units, etc. – looks like a disk!  Virtualization.

• Advantage: use existing filesystem software

• Disadvantages: sacrifice performance, no direct access to raw hardware, unnecessary 
layers / duplication

• Lots of interesting questions about what filesystems would look like if designed 
with flash storage in mind, without an FTL.

• Other storage technologies in the future?
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Recap

• Example 1: Multicore CPUs
• Multicore scheduling

• Multicore locks

• Example 2: Flash Storage

Lecture 25 takeaway: 

Operating systems and 

hardware changes are tightly 

intertwined; multicore 

processors and flash storage 

provide two examples of the 

impact of hardware changes 

on OS implementations.
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Extra Slides
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Multicore Locks, V2

Somehow, we need to block and then unlock the lock??

• Key insight: we don’t need to block prior to unlocking the lock; we just need to 
be marked as blocked.

• Solution (awkward): let’s change the interface of our thread 
scheduler/dispatcher to allow us to separately mark a thread as blocked and 
context switch. (Linux does something like this).
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Multicore Locks, V2

class Lock {

    int locked = 0;

    ThreadQueue q;

    std::atomic<int> sync(0);

};

void Lock::lock() {

    while (sync.exchange(1)) {}

    if (!locked) {

        locked = 1;

        sync = 0;

    } else {

        q.add(currentThread);

        currentThread->state = BLOCKED;

        sync = 0;

        blockThreadIfNecessary();

    }

}

void Lock::unlock() {

    while (sync.exchange(1)) {};

    if (q.empty()) {

        locked = 0;

    } else {

        unblockThread(q.remove());

    }

    sync = 0;

}
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Multicore Locks, Final Version

One last change – we must disable interrupts.

• E.g. if the timer fires right after we acquire the int, another thread trying to get 
it would just busy wait, wasting resources.

void Lock::lock() {

    while (sync.exchange(1)) {}

    if (!locked) {

        locked = 1;

        sync = 0;

    } else {

        q.add(currentThread);

        currentThread->state = BLOCKED;

        sync = 0;

        blockThreadIfNecessary();

    }

}
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Multicore Locks, Final Version

class Lock {

    int locked = 0;

    ThreadQueue q;

    std::atomic<int> sync(0);

};

void Lock::lock() {

    IntrGuard guard;

    while (sync.exchange(1)) {}

    if (!locked) {

        locked = 1;

        sync = 0;

    } else {

        q.add(currentThread);

        currentThread->state = BLOCKED;

        sync = 0;

        blockThreadIfNecessary();

    }

}

void Lock::unlock() {

    IntrGuard guard;

    while (sync.exchange(1)) {};

    if (q.empty()) {

        locked = 0;

    } else {

        unblockThread(q.remove());

    }

    sync = 0;

}
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