CS111], Lecture 3
Unix V6 Filesystem

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared, 1
uploaded, or distributed. (without expressed written permission)

Announcements

* Lecture credit starts with today’s lecture — you can submit PollEV polls in person during live
lecture, or complete the corresponding Canvas quiz by 30min prior to next lecture to get
credit.

* Assign0 due Monday at 11:59PM, no late submissions accepted (except for OAE/Head TA
extensions)
* Check out our assignment Ed post for each assignment for pinned posts!

* Assignments preview: assignl and assign3 are longer than 0 and 2, 4-6 similar to assignl & 3

* Small style guide update —added information about avoiding using the variable type auto,
except in isolated cases such as iterating through key/value pairs in a map

CS111 Topic 1: Filesystems

Key Question: How can we design filesystems to manage files on disk, and what are
the tradeoffs inherent in designing them? How can we interact with the filesystem in
our programs?

Filesystems Filesystem

Case study: Unix

Crash Recovery System calls and
file descriptors

introduction and
design

V6 Filesystem

Lecture 2 Today / Lecture 4 Lectures 5-6 Lectures 6-7

assignl: implement portions of the Unix v6 filesystem!

Learning Goals

* Explore the design of the Unix V6 filesystem
* Understand how we can use inodes to store and access file data
* Learn about how inodes can accommodate small and large files

Plan For Today

* Recap: filesystems so far
* The Unix V6 Filesystem and Inodes
* Practice: reading file data

 Large files and Singly-Indirect Addressing
* Practice: singly-indirect addressing

* Large files and Doubly-Indirect Addressing
* Assignment 1

Plan For Today

* Recap: filesystems so far

Recap: Filesystems So Far

A filesystem is the portion of the OS that manages the disk (persistent storage).
The disk only knows how to read a sector and write a sector.

* Blocks are the storage unit used by the filesystem, can be 1 or more sectors.
Designs we’ve discussed so far:
* Contiguous allocation allocates a file in one contiguous space

* Linked files allocates files by splitting them into blocks and having each block
store the location of the next block.

 Windows FAT is like linked files but stores the links in a “file allocation table” in
memory for faster access.

» Multi-level indexes instead store all block numbers for a file together so we can
quickly jump to any point in the file (but how?). Example: Unix v6 Filesystem

* Many other designs possible — many use a tree-like structure

Fragmentation

* Internal Fragmentation: space allocated for a file is larger than what is
needed. A file may not take up all the space in the blocks it’s using. E.g. block
= 512 bytes, but file is only 300 bytes. (you could share blocks between
multiple files, but this gets complex)

* External Fragmentation (issue with contiguous allocation): no single space is
large enough to satisfy an allocation request, even though enough aggregate
free disk space is available

* Wait, how do we look up / find files? (we’ll talk more about this!)

Plan For Today

* The Unix V6 Filesystem and Inodes

Unix V6 Inodes

Inodes

0 1 2 3 1024 1025 1026 1027 1028 1029

Filesystem metadata File contents

* Aninode ("index node") is a grouping of data about a single file.

* The Unix v6 filesystem stores inodes on disk together in a fixed-size inode table.
Each inode lives on disk, but we can read one into memory when a file is open.

* This inode table starts at block 2 (block O is "boot block" containing hard drive
info, block 1 is "superblock" containing filesystem info). The inode table can span
many blocks. Typically, at most 10% of the drive stores metadata.

* Inodes are 32 bytes big, and 1 block = 1 sector = 512 bytes, so 16 inodes/block.
* Filesystem goes from filename to inode number ("inumber") to file data. 10

Unix V6 Inodes

Each inode stores file information and has space for 8 block numbers.

struct inode {

uintle_t i _mode; // bit vector of file
// type and permissions
uint8 t i nlink; // number of references
// to file
uint8 t i uid; // owner
uint8 t i gid; // group of owner
uint8 t i sizeo; // most significant byte
// of size
uintle t i sizel; // lower two bytes of size

// (size 1is encoded in a
// three-byte number)
uintle t i addr[8]; // device addresses
// constituting file
uintle_t 1i_atime[2]; // access time
uintle_ t i mtime[2]; // modify time
}s5

11

Unix V6 Inodes

Each inode stores file information and has space for 8 block numbers.

struct inode {

uintie6_t

i_mode; //

bit vector of file

// type and permissions

uint8 t i nlink; // number of references
// to file

uint8 t i uid; // owner

uint8 t i gid; // group of owner

uint8 t i size@; // most significant byte
// of size

uintle t i sizel; // lower two bytes of size
// (size 1is encoded in a
([__three-hyte numher)

uintl6é_t i_addr[8]; // device addresses
// constituting file

uintle_t 1_atime[Z2]; // access time

uintle t i mtime[2]; // modify time

¥

For now, we just need
|_addr; an array of 8 block
numbers. | _addr entries are
In file data order, not
necessarily numerical order
- the blocks could be
scattered all over disk. E.g.
a file could have 1_addr =
[12, 200, 56, ...]. It uses
only as many i_addr entries
as needed to store file data.

Reading Second 16 Inodes From Disk

How do we access inodes on disk? E.g. how can we iterate over inodes 17-327

for (int i = 17; i < 33; i++) {
...1inodeTable[i]... // like this?
}

This won’t work — inodes (like file data) are stored on disk, not in memory. To
access them, we must read them into memory first, sector by sector.

13

Reading Second 16 Inodes From Disk

Let's imagine that the hard disk creators provide software to let us interface

with the disk. These can operate on 1 sector, regardless of what type of data it
holds.

void readSector(size_t sectorNumber, void *data);
void writeSector(size_t sectorNumber, const void *data);
(Refresher: size_tis an unsigned number, void * is a generic pointer)

We also have our struct inode:
struct inode {
uintle t i _addr[8]; // block numbers

e O o
}’ 14

Reading Second 16 Inodes From Disk

int inodesPerBlock = DISKIMG SECTOR SIZE / sizeof(struct inode);
struct inode inodes[inodesPerBlock];
readSector(3, inodes);

// Loop over each inode 1n sector 3

for (size t 1 = @; 1 < inodesPerBlock; i++) {
printf("%d\n", inodes[i].i addr[@]); // print first block num
}

15

Reading Second 16 Inodes From Disk

We can pass in an array of any type to store the read-in data, but it’s easiest to
use an array of the same type as the data being read in from disk.

// use array of chars - harder to work with
char buf[DISKIMG SECTOR SIZE];
readSector(3, buf); // always reads in 512 bytes

// now buf 1s filled with 512 bytes from block 3
// but it’s an array of chars...must cast to access each inode

16

Plan For Today

* Practice: reading file data

17

File Data

(For now) i_addr stores the numbers of blocks that contain payload data.

index 0 1 2 3 4 5 6 7
i_addr 341 33 124

/N

Block 341 Block 33 Block 124 To know how many of
the 8 numbers are
File File File used, we can look at the
Part O Part 1 Part 2 size stored In the inode.

18

Practice #1: File Data

Let's say we have an inode that looks like the following (remember 1 block = 1
sector = 512 bytes):

Inode:
size = 600 bytes
i_addr =[122, 56,]

* How many bytes of block 122 store file payload data?
* How many bytes of block 56 store file payload data?

19

Practice #1: File Data

Let's say we have an inode that looks like the following (remember 1 block = 1
sector = 512 bytes):

Inode:
size = 600 bytes
i_addr =[122, 56,]

* How many bytes of block 122 store file payload data? 512 (bytes 0-511)
* How many bytes of block 56 store file payload data? 88 (bytes 512-599)

Key Idea: we must read a full sector with readSector, but can ignore unused

1 a2

20

Practice #2: File Data

Let's say we have an inode that looks like the following (remember 1 block = 1
sector = 512 bytes):

Inode:
size = 2000 bytes
i_addr =[56, 122,45, 22, ...]

Which block number stores the index-1500th byte (0-indexed) of the file?

Respond on PollEv: pollev.com/cs111 ghélis
Aqre

or text CS111 to 22333 once to join.

21

With file size =2000 bytes and block numbers =[56, 122, 45, 22], which block number stores
the index-1500th (0-indexed) byte of the file?

56

122

45

22

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

Practice #2: File Data

Let's say we have an inode that looks like the following (remember 1 block = 1
sector = 512 bytes):

Inode:
size = 2000 bytes
i_addr =[56, 122,45, 22, ...]

Which block number stores the index-1500th byte (0-indexed) of the file?

Bytes 0-511 reside within block 56, bytes 512-1023 within block 122, bytes
1024-1535 within block 45, and bytes 1536-1999 at the front of block 22.

23

Plan For Today

* Large files and Singly-Indirect Addressing

24

Problem: with 8 block numbers per inode, the largest a file can be is 512 * 8 =
4096 bytes (¥4KB). That definitely isn't realistic!

Assuming that the size of an inode is fixed, what can we do?

Solution: Unix V6 has two inode “modes”: small and large, that dictate how it
uses i_addr.

if ((inode.i _mode & ILARG) != 0) { // inode is “large mode”

A “small mode” inode is what we have seen already. But what is a "large mode”
inode?

25

“Large Mode"” Inodes

Let’s say a file’s data is stored across 300 blocks:

126,98, 77,127,1252, 377, 81, 48, 198, 409, 150, 105, 110, 143, 338, 382, 173,
149, 178, 423...

Key idea: the inode only fits 8. So let's store each group of 256 (512 / 2-byte-
numbers) block numbers in a block, and then store that block's number in the
inode! This approach is called singly-indirect addressing.

26

Singly-Indirect Addressing

If the inode is “large mode”, i_addr stores 7 numbers of blocks that contain
block numbers, and those block numbers are of blocks that contain payload
data. 8th block number? we'll get to that :)

(5] 1 2 3 4 5 6 7
i_addr 444 22 2?7
Block 444 Block 22 Block 126 Block 98 Block 1352
126,98, 77, 127, 1352,567, 897, ...
1232, File Part | | File Part File Part

0 1 Tl 256

27

“Large Mode"” Inodes

The Unix V6 filesystem uses singly-indirect addressing (blocks that store payload
block numbers) just for “large mode” files.

e check flag in inode to know whether it is a “small mode” file (direct
addressing) or “large mode” one (indirect addressing)

 If small: all 8 block numbers are direct block numbers (block numbers of
blocks that store file data)

* If large: first 7 block numbers are singly-indirect block numbers (block
numbers of blocks that store direct block numbers), and 8% is TBD ©

28

Indirect Addressing: Design Decisions

We could use singly-indirect addressing in other ways, too — all design decisions!
* We could make just some of the block numbers in an inode use singly-indirect

addressing, and others still be direct addressing

* We could have just one “mode” for files, instead of 2

One argument against indirect addressing: it takes more steps to get to the data

and uses more blocks.

Block 422 Block 451
451, 42, 15, The quick
67, 125, 665, brown fox

467, 231, jumped over

162,136 the...

29

Practice: Indirect Addressing

Let's say we have a “large mode” inode with the following information
(remember 1 block = 1 sector = 512 bytes, and block numbers are 2 bytes big):

Inode:
size = 200,000 bytes
i_addr =[56, 122, ...]

Which singly-indirect block stores the block number holding the index-
150,000th byte of the file? (Hint: 256 * 512 =131,072)

Bytes 0-131,071 reside within blocks whose block numbers are in block 56. Bytes
131,072 (256*512) - 199,999 reside within blocks whose block numbers are in
block 122. 30

Indirect Addressing

Let's assume for now that an inode for a large file uses all 8 block numbers for
singly-indirect addressing. What is the largest file size this supports? Each block
number is 2 bytes big.

8 block numbersin aninode X

256 block numbers per singly-indirect block x
512 bytes per block

=~1MB

31

Even Larger Files

Problem: even with singly-indirect addressing, the largest a file can be is 8 * 256
*512 =1,048,576 bytes (Y1MB). That still isn't realistic!

Solution: let’s have the 8t entry in i_addr use doubly-indirect addressing; store
a block number for a block that contains singly-indirect block numbers.

32

Plan For Today

* Large files and Doubly-Indirect Addressing

33

Large File Scheme

If the file is large, the first 7 entries in i_addr are singly-indirect block numbers
(block numbers of blocks that contain direct block numbers). The 8t entry (if
needed) is a doubly-indirect block number (the number of a block that contains

singly-indirect block numbers).

index 9 1 2 3 4 5 6 7
i_addr 444 22 34 792 168 976 2467 555
/ —
Block 444 Block 555 Block 1352 Block 126 Block 897
126, 98, 70, 127, 1352, 567, ... 897, 4356, 6791,
1232 File Part File Part

0 1,792

34

Large File Scheme

Another way to think about it: a file can be represented using at most 7 + 256 =
263 singly-indirect blocks. The numbers of the first seven are stored in the
inode. The numbers of the remaining 256 are stored in a block whose block

number is stored in the inode.
index %) 1 2

3 4 5 6 7
i_addr 444 22 34 792 168 976 2467 555
/ —
Block 444 Block 555 Block 1352 Block 126 Block 897
126, 98, 70, 127, 1352, 567, ... 897, 4356, 6791,
1232 File Part File Part
0 1,792

35

Large File Scheme

An inode for a large file stores 7 singly-indirect block numbers and 1 doubly-
indirect block number. What is the largest file size this supports? Each block
number is 2 bytes big.

(7+256) singly-indirect block numbers total x

256 block numbers per singly-indirect block x
512 bytes per block
=~34MB

36

Large File Scheme

An inode for a large file stores 7 singly-indirect block numbers and 1 doubly-
indirect block number. What is the largest file size this supports? Each block
number is 2 bytes big.

OR:
(7 * 256 *512) + (256 * 256 * 512) = ~34MB
(singly indirect) + (doubly indirect)

Better! still not sufficient for today's standards, but perhaps in 1975. Moreover,
since block numbers are 2 bytes, we can number at most 216 = 65,536 blocks,
meaning the entire filesystem can be at most 65,536 * 512 ~ 33MB.

37

“Large Mode"” Inodes

The Unix V6 filesystem uses indirect addressing (blocks that store payload block
numbers) just for “large mode” files.

e check flag in inode to know whether it is a “small mode” file (direct
addressing) or “large mode” one (indirect addressing)

 If small: all 8 block numbers are direct block numbers (block numbers of
blocks that store file data)

* If large: first 7 block numbers are singly-indirect block numbers (block
numbers of blocks that store direct block numbers), 8t block number (if
needed) is doubly-indirect (it refers to a block that stores singly-indirect
block numbers)

* Files only use the block numbers they need (depending on their size)

* Note: doubly-indirect is useful (and there are many other possible designs!),
but it means even more steps to access data. 38

Plan For Today

* Assignment 1

39

Implement core functions to read from a Unix v6 filesystem disk!

* inode_iget -> fetch a specific inode

* inode_indexlookup -> fetch a specific payload block number

* file_getblock -> fetch a specified payload block
 directory_findname -> fetch directory entry with the given name

e pathname_lookup -> fetch inumber for the file with the given path

40

Implement core functions to read from a Unix v6 filesystem disk!

* inode_iget -> fetch a specific inode
* inode_indexlookup -> fetch a specific payload block number
* file_getblock -> fetch a specified payload block

can start
immediately

will discuss
next time!

41

Plan For Today

* Recap: filesystems so far Lecture 3 takeaway: The

* The Unix V6 Filesystem and Inodes Unix v6 filesystem

* Practice: reading file data represents small files by

* Large files and Singly-Indirect Addressing | storing direct block

* Practice: singly-indirect addressing numbers, and larger files by

* Large files and Doubly-Indirect Addressing | USINg Indirect addressing -

e Assignment 1 storing 7 singly-indirect and
1 doubly-indirect block
number.

Next time: directories, file lookup and links

42

	Default Section
	Slide 1: CS111, Lecture 3 Unix V6 Filesystem

	Filesystems
	Slide 2: Announcements
	Slide 3: CS111 Topic 1: Filesystems
	Slide 4: Learning Goals
	Slide 5: Plan For Today
	Slide 6: Plan For Today
	Slide 7: Recap: Filesystems So Far
	Slide 8: Fragmentation
	Slide 9: Plan For Today
	Slide 10: Unix V6 Inodes
	Slide 11: Unix V6 Inodes
	Slide 12: Unix V6 Inodes
	Slide 13: Reading Second 16 Inodes From Disk
	Slide 14: Reading Second 16 Inodes From Disk
	Slide 15: Reading Second 16 Inodes From Disk
	Slide 16: Reading Second 16 Inodes From Disk
	Slide 17: Plan For Today
	Slide 18: File Data
	Slide 19: Practice #1: File Data
	Slide 20: Practice #1: File Data
	Slide 21: Practice #2: File Data
	Slide 22
	Slide 23: Practice #2: File Data
	Slide 24: Plan For Today
	Slide 25: File Size
	Slide 26: “Large Mode” Inodes
	Slide 27: Singly-Indirect Addressing
	Slide 28: “Large Mode” Inodes
	Slide 29: Indirect Addressing: Design Decisions
	Slide 30: Practice: Indirect Addressing
	Slide 31: Indirect Addressing
	Slide 32: Even Larger Files
	Slide 33: Plan For Today
	Slide 34: Large File Scheme
	Slide 35: Large File Scheme
	Slide 36: Large File Scheme
	Slide 37: Large File Scheme
	Slide 38: “Large Mode” Inodes
	Slide 39: Plan For Today
	Slide 40: Assignment 1
	Slide 41: Assignment 1

	Closing
	Slide 42: Plan For Today

