
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 5
Crash Recovery

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 14

through 14.1

2

CS111 Topic 1: Filesystems

Filesystems
introduction and

design

Case study: Unix
V6 Filesystem

Crash Recovery
Filesystem

System calls and
file descriptors

Lecture 2 Lecture 3-4 Today/Lecture 6 Lecture 6-7

Key Question: How can we design filesystems to manage files on disk, and what are
the tradeoffs inherent in designing them? How can we interact with the filesystem in
our programs?

assign2: implement a program that can repair a filesystem after a crash, and explore
some of the security and ethical implications of OSes / filesystems.

3

Other Filesystem Design Ideas

Larger block size? Improves efficiency of I/O and inodes but worsens internal
fragmentation. Generally: challenges with both large and small files coexisting.

One idea: multiple block sizes

• Large blocks are 4KB, fragments are 512 bytes (8 fragments fit in a block)

• The last block in a file can be 0-7 fragments

• One large block can hold fragments from multiple files

• Get the time efficiency benefit of larger blocks, but the internal fragmentation
benefit of smaller blocks (small files can use fragments)

4

Filesystem Techniques Today

• Filesystem design is a hard problem! Tradeoffs, challenges with large and small
files.

• Even larger block sizes (16KB large blocks, 2KB fragments) – disk space cheap,
internal fragmentation doesn’t matter as much

• Reallocate files as blocks grow – initially allocate blocks one at a time, but
when a file reaches a certain size, reallocate blocks looking for large contiguous
clusters

• ext4 is a popular current Linux filesystem – you may notice similarities!

• NTFS (replacement for FAT) is the current Windows filesystem

• APFS (“Apple Filesystem”) is the filesystem for Apple devices

https://opensource.com/article/17/5/introduction-ext4-filesystem

5

Additional Filesystem Info

Q: Why do spinning disks only support reading/writing in units of sectors?
A: one reason is the disk does error-correction per-sector on disk, so imposes
restriction on reading/writing whole sectors

6

Learning Goals

• Learn about the role of the free map and block cache in filesystems

• Understand the goals of crash recovery and potential tradeoffs

• Compare and contrast different approaches to crash recovery

7

Plan For Today

• Free space management

• Block Cache

• Crash Recovery Overview

• Approach #1: Consistency check on reboot (fsck)

• Approach #2: Ordered Writes

8

Crash Recovery

To understand crash recovery, we need to understand all places where
filesystem data is stored and maintained.

• We know about most of the disk itself (e.g. Unix V6 layout)

• We’ll learn about how free blocks on disk are tracked. This factors into crash
recovery (e.g. free blocks not in a consistent state).

• We’ll learn about the block cache in memory that stores frequently-used
blocks accessed from disk.

9

Plan For Today

• Free space management

• Block Cache

• Crash Recovery Overview

• Approach #1: Consistency check on reboot (fsck)

• Approach #2: Ordered Writes

10

Free Space Management

Early Unix systems (like Unix v6) used a linked list of free blocks

• Initially sorted, so files allocated contiguously, but over time list becomes
scrambled

More common: use a bitmap

• Array of bits, one per block: 1 means block is free, 0 means in use

• Takes up some space – e.g. 1TB capacity -> 228 4KB blocks -> 32 MB bitmap

• During allocation, search bit map for block close to previous block in file
• Want locality – data likely used next is close by (linked list not as good)

Problem: slow if disk is nearly full, and files become very scattered

11

Free Space Management

More common: use a bitmap – an array of bits, one per block, where 1 means
block is free, 0 means in use.

• During allocation, search bit map for block close to previous block in file

Problem: slow if disk is nearly full, and blocks very scattered

• Expensive operation to find a free block on a mostly full disk

• Poor locality – data likely to be used next is not close by

Solution (used by BSD): don’t let disk fill up!

• E.g. Linux pretends disk has less capacity than it really has (try df on myth!)

• Increase disk cost, but for better performance

12

Plan For Today

• Free space management

• Block Cache

• Crash Recovery Overview

• Approach #1: Consistency check on reboot (fsck)

• Approach #2: Ordered Writes

13

Block Cache

Problem: Accessing disk blocks is expensive, especially if we do it repeatedly for
the same blocks.

Idea: use part of main memory to retain recently-accessed disk blocks. (Many
OSes do this).

• A cache is a space to store and quickly access recently- / frequently-used data.

• Frequently-referenced blocks (e.g. indirect blocks for large files) usually in
block cache. (not necessarily whole files, just individual blocks).

• Invisible to programs – but all operations go through the block cache

• Challenge: how do we utilize it? What if it gets full?

14

Block Cache

Challenge: how do we utilize it? What if it gets full?

One approach - least-recently-used “LRU” replacement – If we need something
not in the cache, we read it from disk and then add it to the cache. If there’s no
room in the cache, we remove the least-recently-used element.

15

Block Cache

Key Question: When a block in the block cache is modified, do we stop and wait
and immediately write it to disk? Or do we delay it slightly until later?

“Synchronous Writes”
Write immediately to disk

“Delayed Writes”
Don’t write immediately to disk

• Wait (e.g. Unix used 30sec) in case of more
writes to a block, or it is deleted

16

Block Cache

Key Question: When a block in the block cache is modified, do we stop and wait
and immediately write it to disk? Or do we delay it slightly until later?

“Synchronous Writes”
Write immediately to disk

“Delayed Writes”
Don’t write immediately to disk

• Slow: program must wait to proceed until
disk I/O completes

• Safer: less risk (but not zero risk!) of data
loss because it’s written as soon as possible.

• Wait (e.g. Unix used 30sec) in case of more
writes to a block, or it is deleted

17

Block Cache

Key Question: When a block in the block cache is modified, do we stop and wait
and immediately write it to disk? Or do we delay it slightly until later?

“Synchronous Writes”
Write immediately to disk

“Delayed Writes”
Don’t write immediately to disk

• Slow: program must wait to proceed until
disk I/O completes

• Safer: less risk (but not zero risk!) of data
loss because it’s written as soon as possible.

• Wait (e.g. Unix used 30sec) in case of more
writes to a block, or it is deleted

• Fast + Efficient: writes return immediately,
eliminates disk I/Os in many cases (e.g.
many small writes to the same block)

• Less safe: may lose more data after a system
crash! “Are you willing to lose your last
30sec of work in exchange for a
performance bump?” (if e.g. ~2-10x faster)

• (Aside– program can call fsync function to
force disk write)

18

Block Cache

The block cache could also end up reordering operations!

• E.g. a bunch of operations performed, written to block cache with delayed
writes

• After e.g. 30s, we go through and flush blocks to disk, could flush them in
some order different from original operation order.

19

Plan For Today

• Free space management

• Block Cache

• Crash Recovery Overview

• Approach #1: Consistency check on reboot (fsck)

• Approach #2: Ordered Writes

20

Crash Recovery

Sometimes, computers crash or shut down unexpectedly. In those situations,
we want to avoid filesystem data loss or corruption as much as possible.

How can we recover from crashes without losing file data or corrupting the
disk?

assign2: implement a program that can repair a filesystem after a crash, and explore
some of the security and ethical implications of OSes / filesystems.

21

Crash Recovery

Challenge #1 – data loss: crashes can happen at any time, and not all data might
have been saved to disk.

• E.g. if you saved a file but it hadn’t actually been written to disk yet.

Challenge #2 - inconsistency: Crashes could happen even in the middle of
operations, and this could leave the disk in an inconsistent state.

• E.g. if a modification affects multiple blocks, a crash could occur when some of
the blocks have been written to disk but not the others.

Ideally, filesystem operations would be atomic, meaning they happen either
entirely or not at all. But this isn’t fully possible.

22

Example Filesystem Operations

Main steps to create a file with some data in it:

• Initialize a new inode

• Add directory entry to refer to that inode

• Update free list to mark newly-used payload data blocks as used

• Write data to new payload blocks

Main steps to add another block of data to an existing file:

• Update free list to mark new block as used

• Update inode to store new block number (and other fields like size, etc.)

• Write data to new block

Operations may not be written to disk in these specific orders!

23

Crash Recovery

Challenge #2 - inconsistency: Crashes could happen even in the middle of
operations, and this could leave the disk in an inconsistent state.

What if:
1. Update free list to mark

new block as used
2. Update inode to store new

block number

3. Write data to new block

What if:
1. Update inode to store new

block number
2. Write data to new block

3. Update free list to mark

new block as used

Crash!
Crash!

Problem: on reboot, file has
garbage block!

Problem: our block could be
given out later to someone else!

24

Crash Recovery

Key challenge: tradeoffs between
crash recovery abilities and filesystem

performance.

25

Crash Recovery

We will discuss 3 approaches to crash recovery, building up to the most common
one – logging:

1. Consistency Check on reboot (fsck)

2. Ordered Writes

3. Write-Ahead Logging (“Journaling”)

26

Plan For Today

• Free space management

• Block Cache

• Crash Recovery Overview

• Approach #1: Consistency check on reboot (fsck)

• Approach #2: Ordered Writes

27

fsck

Idea #1: write a program that runs on bootup to check the filesystem for
consistency and repair any problems it can.

Example: Unix fsck (“file system check”)

• Must check whether there was a clean shutdown (if so, no work to do). How
do we know? Set flag on disk on clean shutdown, clear flag on reboot.

• If there wasn’t, then scan disk contents, identify inconsistencies, repair them.

• Scans metadata (inodes, indirect blocks, free list, directories)

• Goals: restore consistency, minimize info loss

28

Possible fsck Scenarios

Example #1: block in file and also in free list?

Action: remove block from free list

What if:
1. Update inode to store new

block number
2. Write data to new block

3. Update free list to mark

new block as used

Crash!

29

Possible fsck Scenarios

Example 2: block a part of two different files (how is this possible??)

Let’s say we are deleting file A and also creating file B, which coincidentally uses
the same old payload blocks that A used.

Key Idea: after all these operations, their changes are in the block cache. But the
cache could write the blocks to disk in some order, and we could crash before all
blocks are written!

To delete file A, we need to… To create file B, we need to…

• Delete inode A
• Mark A’s payload blocks as free in

free list

• Create inode B
• Add dirent for B
• Mark same payload blocks as used

in free list
• Write data to new blocks

30

Possible fsck Scenarios

Example 2: block a part of two different files (how is this possible??)

Let’s say we are deleting file A and also creating file B, which coincidentally uses
the same old payload blocks that A used.

To delete file A, we
need to…

To create file B, we
need to…

• Delete inode A
• Mark A’s payload

blocks as free in
free list

• Create inode B
• Add dirent for B
• Mark same payload

blocks as used in
free list

• Write data to new
blocks

What if: all operations performed in
block cache, then block cache writes
inode B’s block to disk.

THEN CRASH!
No other blocks written to disk 

31

Possible fsck Scenarios

Example 2: block a part of two different files (how is this possible??)

Action: Make a copy for each? (works, though potential security issues if block is
migrated to unintended file) Remove from both? (probably not, don’t want to
lose potentially-useful data)

Example 3: inode reference count (# times referenced by a directory entry) = 1,
but not referenced in any directory.

Action: create link in special lost+found directory.

32

Limitations of fsck

What are the downsides/limitations of fsck?

• Time: can’t restart system until fsck completes. Larger disks mean larger
recovery time (Used to be manageable, but now to read every block
sequentially in a 5TB disk -> 8 hours!)

• Restores consistency but doesn’t prevent loss of information.

• Restores consistency but filesystem may still be unusable (e.g. a bunch of core
system files moved to lost+found)

• Security issues: a block could migrate from a password file to some other
random file.

Can we do better? Can we avoid having to scan the whole disk on reboot?

33

Plan For Today

• Free space management

• Block Cache

• Crash Recovery Overview

• Approach #1: Consistency check on reboot (fsck)

• Approach #2: Ordered Writes

34

Ordered Writes

Corruption Example: block in file and also in free list. (e.g. file growing, claims
block from free list, but crash before free list updates)

Key insight: we are performing 2 operations – removing block from free list, plus
adding block number to inode. If we want to ensure that a block is never both in
the free list and in an inode simultaneously, which operation should we do first?
Would this resolve all problems?

Respond on PollEv:

pollev.com/cs111

35

36

Ordered Writes

Idea #2: We could prevent certain kinds of inconsistencies by making updates in
a particular order.

Example: adding block to file: first write back the free list, then write the inode.
Thus, we could never have a block in both the free list and an inode. However,
we could leak disk blocks (how?)

41

Recap

• Free space management

• Block Cache

• Crash Recovery Overview

• Approach #1: Consistency check on
reboot (fsck)

• Approach #2: Ordered Writes

Next time: more about crash recovery

Lecture 5 takeaways: The

free list tracks free blocks on

disk and is commonly

implemented using a bitmap.

The block cache caches

recently-accessed disk

blocks. Crash recovery

challenges include both data

loss and inconsistency. Fsck

and ordered writes are 2

approaches to crash recovery.

	Slide 1: CS111, Lecture 5 Crash Recovery
	Slide 2: CS111 Topic 1: Filesystems
	Slide 3: Other Filesystem Design Ideas
	Slide 4: Filesystem Techniques Today
	Slide 5: Additional Filesystem Info
	Slide 6: Learning Goals
	Slide 7: Plan For Today
	Slide 8: Crash Recovery
	Slide 9: Plan For Today
	Slide 10: Free Space Management
	Slide 11: Free Space Management
	Slide 12: Plan For Today
	Slide 13: Block Cache
	Slide 14: Block Cache
	Slide 15: Block Cache
	Slide 16: Block Cache
	Slide 17: Block Cache
	Slide 18: Block Cache
	Slide 19: Plan For Today
	Slide 20: Crash Recovery
	Slide 21: Crash Recovery
	Slide 22: Example Filesystem Operations
	Slide 23: Crash Recovery
	Slide 24: Crash Recovery
	Slide 25: Crash Recovery
	Slide 26: Plan For Today
	Slide 27: fsck
	Slide 28: Possible fsck Scenarios
	Slide 29: Possible fsck Scenarios
	Slide 30: Possible fsck Scenarios
	Slide 31: Possible fsck Scenarios
	Slide 32: Limitations of fsck
	Slide 33: Plan For Today
	Slide 34: Ordered Writes
	Slide 35
	Slide 36: Ordered Writes
	Slide 41: Recap

