
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 6
Crash Recovery, Continued

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 14

through 14.1

2

CS111 Topic 1: Filesystems

Filesystems
introduction and

design

Case study: Unix
V6 Filesystem

Crash Recovery
Filesystem

System calls and
file descriptors

Lecture 2 Lecture 3-4 Lecture 5/Today Lecture 7

Key Question: How can we design filesystems to manage files on disk, and what are
the tradeoffs inherent in designing them? How can we interact with the filesystem in
our programs?

assign2: implement a program that can repair a filesystem after a crash, and explore
some of the security and ethical implications of OSes / filesystems.

3

Learning Goals

• Understand the write-ahead logging approach to crash recovery

• Compare and contrast different crash recovery approaches

4

Plan For Today

• Recap: Crash Recovery so far

• More about Approach #2: Ordered Writes

• Approach #3: Write-Ahead Logging (“Journaling”)

5

Plan For Today

• Recap: Crash Recovery so far

• More about Approach #2: Ordered Writes

• Approach #3: Write-Ahead Logging (“Journaling”)

6

Free List and Block Cache

Filesystems commonly use a bitmap to track free blocks (1 bit / block , 1 = free,
0 = used).

• During allocation, search bit map for block close to previous block in file
• Want locality – data likely used next is close by (linked list not as good)

• To ensure a minimum number of free blocks, we can pretend the disk is fuller
than it actually is (!)

Many OSes have a block cache that stores recently-accessed disk blocks.

• Helps us avoid always having to read a block from disk – check cache first

• “least recently used” one way to manage cache – if full, kick out least recently
used block

7

Crash Recovery

Challenge #1 – data loss: crashes can happen at any time, and not all data might
have been saved to disk.

• E.g. if you saved a file but it hadn’t actually been written to disk yet.

Challenge #2 - inconsistency: Crashes could happen even in the middle of
operations, and this could leave the disk in an inconsistent state.

• E.g. adding block to file: inode was written to store block number, but block
wasn’t marked in the filesystem as used (it’s still listed in the free list)

• Note: garbage data in a file is an example of data loss rather than inconsistency

8

Approach #1: fsck

Idea #1: write a program that runs on bootup to check the filesystem for
consistency and repair any problems it can.

Example: Unix fsck (“file system check”)

• Runs when we reboot after a crash - scan metadata, identify inconsistencies,
repair them, with goal of restoring consistency, minimizing info loss.

• Downsides:
• Time – can’t restart system until fsck completes

• Restores consistency, but other limitations – e.g. can’t prevent info loss, system may be
consistent but unusable (e.g. system files moved to lost+found), security issues
migrating a block to another file

9

Ordered Writes

Idea #2: We could prevent certain kinds of inconsistencies by making updates in
a particular order.

Example: adding block to file: first write back the free list, then write the inode.
Thus, we could never have a block in both the free list and an inode. However,
we could leak disk blocks (how?)

10

Plan For Today

• Recap: Crash Recovery so far

• More about Approach #2: Ordered Writes

• Approach #3: Write-Ahead Logging (“Journaling”)

11

Ordered Writes

Idea #2: We could prevent certain kinds of inconsistencies by making updates in
a particular order.

In general:

• Always initialize target before initializing new reference (e.g. initialize inode
before adding directory entry to it)

• Before reusing a resource (inode, disk block, etc.), nullify all existing references
to it (e.g. adding block to free list)

Result: eliminate the need to wait for fsck on reboot!

12

Ordered Writes

Rule 1: Always initialize target before initializing new reference (e.g. initialize
inode before adding directory entry to it)

What if (creating a file):
1. Add dirent pointing to new

inode

2. Initialize new inode

Crash!

Problem: dirent pointing to
uninitialized inode!

What if (creating a file):
1. Initialize new inode

2. Add dirent pointing to new

inode

Crash!

Less-severe issue: file not
referred to by any dirent
(can stick in lost+found).

Ordered writes approach:

13

Ordered Writes

Rule 2: Before reusing a resource (inode, disk block, etc.), nullify all existing
references to it (e.g. adding block to free list)

What if (file no longer needs last
block):

1. Mark block as free in free list

2. Update inode to no longer
refer to this block number.

Crash!

Problem: block in file and
marked free in free list!

What if (file no longer needs last
block):

1. Update inode to no longer
refer to this block number.

2. Mark block as free in free list

Crash!

Less-severe issue: leaked
block (can reclaim later)

Ordered writes approach:

14

Ordered Writes

Downside #1: performance. This approach forces synchronous writes in the
middle of operations, partially defeating the point of the block cache.

Improvement: block cache tracks dependencies between blocks for later – can
do writes asynchronously, since we remember the required order of operations.

• Example: adding a block to file A (requires updating inode and free list). We must
write free list first. So add dependency from block storing its inode (say block 12) to
the free list block (say block 99) storing the bit for the new block.

Block 99
(chunk of
free list)

Block 54 Block 23

Block 12
(contains

file A
inode)Block cache:

Must first write

15

Ordered Writes

Improvement: block cache tracks dependencies between blocks for later – can
do writes asynchronously, since we can remember the required order of
operations. Tricky to get right– circular dependencies possible, must avoid!

Example: delete file A (update inode block 12, then free list block 99), also create
file B (update free list block 99, then inode block 12)

Block 99 Block 54 Block 23 Block 12

Block cache:

16

Ordered Writes

Downside #2: can leak resources (e.g. free block removed from free list but
never used)

Improvement: run fsck in the background to reclaim leaked resources (fsck can
run in background because filesystem is repaired, but resources have leaked)

Can we do better? E.g., can we avoid leaking data?

17

Plan For Today

• Recap: Crash Recovery so far

• More about Approach #2: Ordered Writes

• Approach #3: Write-Ahead Logging (“Journaling”)

18

Write-Ahead Logging (Journaling)

Keep a “paper trail” of disk operations that we can revisit if a crash occurs.

• append-only log file on disk that stores information about disk operations

• Before performing an operation, record its info in the log, and write that to
disk before doing the operation itself (“write-ahead”)
• E.g. “I am adding block 4267 to inode 27, index 5”

• Then, the actual block updates can be carried out later, in any order

• If a crash occurs, replay the log to make sure all updates are completed on
disk. Thus, we can detect/fix inconsistencies without a full disk scan.

• Log is “source of truth”

19

Write-Ahead Logging (Journaling)

• Typically we only log metadata operations, not actual file data operations (data
is much more expensive, since much more written to log). Tradeoff!

• Most modern filesystems do some sort of logging (e.g. Windows NTFS) – many
allow choice whether you want data logging or not.

• Logs one of the most important data structures used in systems today

20

assign2 Log Example

[offset 33562846]
* LSN 1838326418
 LogBlockAlloc
 blockno: 1027
 zero_on_replay: 0

[offset 33562862]
* LSN 1838326419
 LogPatch
 blockno: 8
 offset_in_block: 136
 bytes: 0304
 inode #52 (i_addr[0] = block pointer 1035)

21

Write-Ahead Logging (“Journaling”)

Problem: log can get long!

Solution: occasional “checkpoints” – truncate the log occasionally once we
confirm that portion of the log is no longer needed.

Problem: could be multiple log entries for a single “operation” that should
happen atomically.

Solution: have a log mechanism to track “transactions” (atomic operations) and
only replay those if the entire transaction is fully entered into the log. (assign2
wraps each transaction with LogBegin and LogCommit)

22

Write-Ahead Logging (“Journaling”)

Problem: what if we crash, replay the log and crash again while replaying?
(Assume no more crashes after that). (Hint: every time we crash, we reboot
and replay the log). (log goes left to right, old to new).

Respond on PollEv:

pollev.com/cs111

set inode 5’s
size to 1024

append block
24 to inode 5

…

23

24

Write-Ahead Logging (“Journaling”)

Problem: what if we crash, replay the log and crash again while replaying?
(Assume no more crashes after that). (Hint: every time we crash, we reboot
and replay the log). (log goes left to right, old to new).

Inode 5 would have block 24 appended twice! (uh oh)

set inode 5’s
size to 1024

append block
24 to inode 5

…

25

Write-Ahead Logging (“Journaling”)

Problem: it’s possible for us to replay a log operation that has already
happened. (ie. By crashing during replay, or by crashing after operation is done
but before log is truncated).

Solution: make all log entries idempotent (doing multiple times has same effect
as doing once). E.g. “append block X to file” (bad) vs. “set block number X to Y”

set inode 5’s
size to 1024

append block
24 to inode 5

…

set inode 5’s
size to 1024

Set inode 5
i_addr[1] = 24

…

26

Write-Ahead Logging (“Journaling”)

Problem: log entries must be written synchronously before the operations

Solution: delay writes for log, too (i.e. build log, but don’t write immediately;
when a block cache block is written, write all log entries then). Though this risks
losing some log entries.

Logging doesn’t guarantee that everything is preserved, but it does guarantee
that what’s there is consistent (separates durability – data will be preserved –
from consistency – state is consistent)

27

Crash Recovery

Ultimately, tradeoffs between durability, consistency and performance

• E.g. if you want durability, you’re going to have to sacrifice performance

• E.g. if you want highest performance, you’re going to have to give up some
crash recovery capability

• What kinds of failures are most important to recover from, and how much are
you willing to trade off other benefits (e.g. performance)?

Still lingering problems – e.g. disks themselves can fail

28

Crash Recovery

We’ve discussed 3 main approaches to crash recovery:

1. Consistency check on reboot (fsck) – add-on program (no changes to how
filesystem performs operations when running) that runs on boot to repair
whatever we can. But can’t restore everything and may take a while.

2. Ordered Writes – modify the write operations to always happen in particular
orders, eliminating various kinds of inconsistencies. But requires doing
synchronous writes or tracking dependencies and can leak resources.

3. Write-Ahead Logging – log metadata (and optionally file data) operations
before doing the operations to create a paper trail we can redo in case of a
crash.

29

assign2

• Assign2 tools let you simulate real filesystems, make them crash, and
experiment with recovery tools

• Implement a program that replays a log after a crash

• Mix of filesystem exploration (playing around with simulated filesystems,
viewing logs and filesystem state) and coding (about ~10-15 lines total)

• Also kicks off embedded ethics discussions about OS trust and security

• You’ll have a chance to play with these tools in the assignment and in section

30

Recap

• Recap: Crash Recovery so far

• More about Approach #2: Ordered
Writes

• Approach #3: Write-Ahead Logging
(“Journaling”)

Next time: using the filesystem in our
own programs

Lecture 6 takeaways: There

are various ways to

implement crash recovery,

such as logging, each with

tradeoffs between durability,

consistency and performance.

	Slide 1: CS111, Lecture 6 Crash Recovery, Continued
	Slide 2: CS111 Topic 1: Filesystems
	Slide 3: Learning Goals
	Slide 4: Plan For Today
	Slide 5: Plan For Today
	Slide 6: Free List and Block Cache
	Slide 7: Crash Recovery
	Slide 8: Approach #1: fsck
	Slide 9: Ordered Writes
	Slide 10: Plan For Today
	Slide 11: Ordered Writes
	Slide 12: Ordered Writes
	Slide 13: Ordered Writes
	Slide 14: Ordered Writes
	Slide 15: Ordered Writes
	Slide 16: Ordered Writes
	Slide 17: Plan For Today
	Slide 18: Write-Ahead Logging (Journaling)
	Slide 19: Write-Ahead Logging (Journaling)
	Slide 20: assign2 Log Example
	Slide 21: Write-Ahead Logging (“Journaling”)
	Slide 22: Write-Ahead Logging (“Journaling”)
	Slide 23
	Slide 24: Write-Ahead Logging (“Journaling”)
	Slide 25: Write-Ahead Logging (“Journaling”)
	Slide 26: Write-Ahead Logging (“Journaling”)
	Slide 27: Crash Recovery
	Slide 28: Crash Recovery
	Slide 29: assign2
	Slide 30: Recap

