CS111, Lecture 7

File Descriptors and System Calls

Optional reading:
Operating Systems: Principles and Practice (2"9 Edition): Sections 13.1-13.2

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared,
uploaded, or distributed. (without expressed written permission)

CS198 Section Leading!

cs198@cs.stanford.edu
https://docs.google.com/presentation/d/1jzb7xIx|

0eTCIhT839XT2MYUBeEETF6D80Vil6ZP1Tw/edit?
usp=sharing

cs198.stanford.edu — application due 1/30

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. Allrights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This contentis protected and may notbe shared,
uploaded, or distributed. (without expressed written permission)

mailto:cs198@cs.stanford.edu
https://docs.google.com/presentation/d/1jzb7xIxI0eTClhT839XT2MYUBeEETF6D80ViJ6ZP1Tw/edit?usp=sharing
https://docs.google.com/presentation/d/1jzb7xIxI0eTClhT839XT2MYUBeEETF6D80ViJ6ZP1Tw/edit?usp=sharing
https://docs.google.com/presentation/d/1jzb7xIxI0eTClhT839XT2MYUBeEETF6D80ViJ6ZP1Tw/edit?usp=sharing

CS111 Topic 1: Filesystems

Key Question: How can we design filesystems to manage files on disk, and what are
the tradeoffs inherent in designing them? How can we interact with the filesystem in
our programs?

Filesystem
Crash Recovery System calls and
file descriptors

A CHBISE Case study: Unix

V6 Filesystem

introduction and
design

Lecture 2 Lecture 3-4 Lecture 5-6 Lecture 6/Today

assign2: implement a program that can repair a filesystem after a crash, and explore
some of the security and ethical implications of OSes / filesystems.

Learning Goals

e Learn about the open, close, read and write functions that let us interact with
files

* Get familiar writing programs that read, write and create files

e Learn what the operating system manages for us so that we can interact with
files

Plan For Today

e System calls

e open() and close()

* Practice: creating files
* read() and write()

* Practice: copying files

cp -r /afs/ir/class/csl11l1/lecture-code/lect7 . 5

e System calls

Plan For Today

cp -r /afs/ir/class/csl11l1/lecture-code/lect7 .

OS vs. User Mode

* The operating system runs code in a privileged “kernel mode” where it can do
things and access data that regular user programs cannot. E.g. only OS can call
readSector.

e System tracks whether it is in “user mode” or “kernel mode”

* The OS provides public functions that we can call in our user programs —
system calls. When these functions are called, it switches over to “kernel
mode”.

System Calls

Functions to interact with the operating system are part of a group of functions
called system calls.

* A system call is a public function provided by the operating system.

* The operating system handles these tasks because they require special
privileges that we do not have in our programs. When a system call runs, it
runs in kernel mode, and we switch back to user mode when it’s done.

* The operating system kernel runs the code for a system call, completely
isolating the system-level interaction from the (potentially harmful) user
program.

* We are going to examine the system calls for interacting with files. When
writing production code, you will often use higher-level methods that build on
these (like C++ streams or FILE *), but let's see how they work!

Call open to open a file:

int open(const char *pathname, int flags);

e pathname: path to open
* flags: bitwise OR of options specifying the behavior for opening the file
* returns a file descriptor representing the opened file, or -1 on error

Many possible flags! (see manual page for full list).

* Must have exactly 1 of: O_RDONLY (read-only), O_ WRONLY (write-only),
O_RDWR (read and write). These say how you will use the file in this program.

* Optional: O_TRUNC - if the file exists already, truncate (clear) it. 9

Call open to open a file:

int open(const char *pathname, int flags, mode t mode);
You can also create a new file if the specified file doesn’t exist, by including

O_CREAT as one of the flags. You must also specify a third mode parameter.
* mode: the permissions to attempt to set for a created file, e.g. 0644 (octal!)

10

Call open to open a file:

int open(const char *pathname, int flags, mode t mode);
You can also create a new file if the specified file doesn’t exist, by including

O_CREAT as one of the flags. You must also specify a third mode parameter.
* mode: the permissions to attempt to set for a created file, e.g. 0644 (octal!)

Another useful flag: O _EXCL, which says the file must be created from scratch,
and to fail if the file already exists.

Aside: how are there multiple signatures for open in C? See here.)

https://stackoverflow.com/questions/15151396/open-system-call-polymorphism

File Descriptors

A file descriptor is like a "ticket number" representing your currently-open file.

* It is a unique number assigned by the operating system to refer to that
instance of that file in this program.

e Each program has its own file descriptors

* You can have multiple file descriptors for the same file - every time you call
open, you get a new file descriptor.

 When you wish to refer to the file (e.g. read from it, write to it) you must
provide the file descriptor.

» file descriptors are assigned in ascending order (next FD is lowest unused)

* The OS remembers information associated with each of your file descriptors,
like where in the file you currently are (if reading/writing). E.g. separate
locations in the file for each file descriptor. -

Call close to close a file when you’re done with it:

int close(int fd);

* fd: the file descriptor you'd like to close.
e Returns: 0 on success, -1 on error (we usually won’t error-check close)

Important to close files when done with them to preserve system resources.
* You can use valgrind to check if you forgot to close any files. (--track-fds=yes)

13

Plan For Today

* Practice: creating files

cp -r /afs/ir/class/csl11l1/lecture-code/lect7 . 14

Example: Creating a File (touch)

// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1l], O WRONLY | O CREAT | O _EXCL, 0644);

// If an error occurs, print out an error message

if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1l]);
return 1;
}
// Close the file, we are done with it (no error checking)
close(fd);
return 0;

}
. touch.c s

Example: Creating a File (touch)

int fd = open(argv[1], O _WRONLY | O _CREAT | O EXCL, 0644);

2

Open the
file to be
written to

AT AUVUTT O A

Example: Creating a File (touch)

int fd = open(argv[1], O _WRONLY | O _CREAT | O EXCL, 0644);

__Yc\

If the fil
doesn’t exist,
create it

- Il - G \IIU N

v

Example: Creating a File (touch)

int fd = open(argv[1], O _WRONLY | O _CREAT | O EXCL, 0644);

If it does
exist, throw
an error

11w O \UJ AN L

Example: Creating a File (touch)

int fd = open(argv[1], O _WRONLY | O _CREAT | O EXCL, 0644);

a¥o) \ Y c\ "1\ n \ WA g I B W

I o

If we create a new file, it should
have these permissions (don’t
worry about specifics for now)

- \W T 1 \Jl \..II_\..I\.LTIBI

Example: Creating a File (touch)

// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1l], O WRONLY | O CREAT | O _EXCL, 0644);

// If an error occurs, print out an error message

if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1l]);
return 1;
}
// Close the file, we are done with it (no error checking)
close(fd);
return 0;

}
. touch.c "

Example: Creating a File (touch)

// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1l], O_WRONLY | O CREAT | O _EXCL, 0644);

// If an error occurs, prin ut an error message

if (fd == -1) {
printf("There was gnrok ating \"%s\"I\n", argv[1l]);
return 1; Specify how
} we are going
to use this
// Close the file, w¢ .., . . th it (no error checking)
close(fd); file in this
return 9; program

}
. touch.c o

Example: Creating a File (touch)

// ./touch newfile.txt
int main(int argc, char *argv[]) {

int fd = open(argv[1l], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message

if (fd == -1) {
printf("There was a problem creating \"%s\"!
return 1;
}
// Close the file, we are done with it (no err
close(fd);
return 0;

}
. touch.c

permissions
for everyone
on disk if
this call
creates a

new file
22

* read() and write()

Plan For Today

cp -r /afs/ir/class/csl11l1/lecture-code/lect7 .

23

Call read to read bytes from an open file:

ssize t read(int fd, void *buf, size t count);

* fd: the file descriptor for the file you'd like to read from

* buf: the memory location where the read-in bytes should be put

e count: the number of bytes you wish to read

* returns -1 on error, 0 if at end of file, or nonzero if bytes were read (will never return
0 but not be at end of file)

Key idea: read may not read all the bytes you ask it to! This is not necessarily an error
—e.g. if there aren’t that many bytes, or if interrupted. The return value tells you how
many were read. If we must have all bytes, we can call read more.

Key idea #2: the operating system keeps track of where in a file a file descriptor is

reading from. So the next time you read, it will resume where you left off. y

Call write to write bytes to an open file:

ssize_t write(int fd, const void *buf, size_t count);

* fd: the file descriptor for the file you'd like to write to

* buf: the memory location storing the bytes that should be written

e count: the number of bytes you wish to write from buf

* returns -1 on error, or otherwise the number of bytes that were written (nonzero

assuming count > 0)

Key idea: write may not write all the bytes you ask it to! This is not necessarily an
error — e.g. if not enough space, or if interrupted. The return value tells you how many

were written. If we must write all bytes, we can call write more.

Key idea #2: the operating system keeps track of where in a file a file descriptor is

writing to. So the next time you write, it will write to where you left off. N

Example: Copy

Let's write an example program copy that emulates the built-in cp command. It
takes in two command line arguments (file names) and copies the contents of
the first file to the second.

E.g. ./copy source.txt dest.txt

1. Open the source file and the destination file and get file descriptors

2. Read each chunk of data from the source file and write it to the destination
file

(note: we won’t worry about error-checking open/close/read/write, but full
version here includes error checking).

copy-soln.c and copy-soln-full.c (with error checking)

26

https://cs111.stanford.edu/lecture-code/lect7/copy-soln-full.c

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.
static const int kDefaultPermissions = 0644;

int main(int argc, char *argv[]) {
int sourceFD = open(argv[1l], O RDONLY);
int destinationFD = open(argv[2],
O WRONLY | O _CREAT | O _EXCL, kDefaultPermissions);

copyContents(sourceFD, destinationFD);
close(sourceFD);

close(destinationFD);
return 9;

27

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.
static const int kDefaultPermissions = 0644;

int main(int argc, char *argv[]) {
int sourceFD = open(argv[1l], O RDONLY);
int destinationFD = open(argv[2],
O WRONLY | O CREAT | O _EXCL, kDefaultPermissions);

copyContents(sourceFD, destinationFD):

“create the file to write to, and
close(sourceFD); it f not al g St
close(destinationFD); It Must not aiready exis
return 0O;

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {

// Goal: while there’s more data from source, read the next
// chunk and write it to the destination.

29

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
while (true) {

.o Loop through the source file

} one chunk at a time — for each
J chunk, write it to the
destination file.

30

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
while (true) {

char buffer[kCopyIncrement]; Read a chunk of at most
) AR kCopylncrement (arbitrary
} amount) bytes at a time.

31

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
while (true) {

char buffer[kCopyIncrement];

ssize t bytesRead = read(sourcefFD, buffer, sizeof(buffer));
if (bytesRead == @) break;

Read a chunk of bytes. It may
not be kCopylncrement bytes!
} If read returns O, there are no
more bytes to read.

32

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a

specified destination.

void copyContents(int sourceFD, int destinationFD) {

while (true) {
char buffer[kCopyIncrement];

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));

if (bytesRead == @) break;

Cool behavior: the next time
through the loop when we call
read, it will automatically read the
next chunk of bytes from the file!

33

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
while (true) {
char buffer[kCopyIncrement];
ssize t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
writeAllBytes(destinationFD, buffer, bytesRead);

} Now we write this chunk of bytes to the destination file. We cannot
just call write, as it may not write all the bytes in one go — we will make
a helper that calls write in a loop until all these bytes are written.

34

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) {
while (true) {
char buffer[kCopyIncrement];
ssize t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
writeAllBytes(destinationFD, buffer, bytesRead);

35

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) { .. }

void writeAllBytes(int destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0O;
while (bytesWritten < nbytes) {

¥

} Now we write this chunk of

We must loop until write
writes them all.

bytes to the destination file.

36

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) { .. }

void writeAllBytes(int destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0;
while (bytesWritten < nbytes) {
ssize t count = write(...);
bytesWritten += count;

37

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) { .. }

void writeAllBytes(int destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0;
while (bytesWritten < nbytes) {
ssize t count = write(destinationFD, buffer + bytesWritten,
nbytes - bytesWritten);

bytesWritten += count; .) _
} Since write may write only

} some of the bytes, we need to
just give it the rest of the bytes
that it hasn’t written yet.

38

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) { .. }

void writeAllBytes(int destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0;
while (bytesWritten < nbytes) {
ssize t count = write(destinationFD, buffer + bytesWritten,

nbytes - bytesWritten);
bytesWritten += count;

} Cool behavior: each time through the loop, write knows where we
left off writing in the file from before. However, it doesn’t know
what to write — we must do pointer arithmetic to specify that.

BO

Example: Copy

The copy program emulates cp; it copies the contents of a source file to a
specified destination.

void copyContents(int sourceFD, int destinationFD) { .. }

void writeAllBytes(int destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0;
while (bytesWritten < nbytes) {

ssize t count = write(destinationFD, buffer + bytesWritten,

nbytes - bytesWritten);
bytesWritten += count;

40

Example: Copy

void copyContents(int sourceFD, int destinationFD) {
while (true) {
char buffer[kCopyIncrement];
ssize t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
writeAllBytes(destinationFD, buffer, bytesRead);

¥

void writeAllBytes(int destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0;
while (bytesWritten < nbytes) {
ssize t count = write(destinationFD, buffer + bytesWritten,
nbytes - bytesWritten);
bytesWritten += count;

Example: Copy

Respond on PollEv: gtz
Would it also work if we used sizeof(buffer) like below? pollev.com/cslll

void copyContents(int sourceFD, int destinationFD) {
while (true) {

char buffer[kCopyIncrement];
ssize t bytesRead = read(sourceFD, buffer, sizeof(buffer));
if (bytesRead == 0) break;
writeAllBytes(destinationFD, buffer, sizeof(buffer));
}
}
void wrlteAllBytes(lnt destinationFD, char buf[], int nbytes) {
size t bytesWritten = 0;
while (bytesWritten < nbytes) {

ssize t count = write(destinationFD, buffer + bytesWritten,

nbytes - bytesWritten);
bytesWritten += count;

Would using sizeof(buffer) in this way also work?

Yes - we are reading bytes into the buffer, and we want to write the entire contents of the buffer each time
R -

No - read may not read enough bytes to fill the whole buffer, and therefore we shouldn't write all bytes in the
buffer

S
No - read may read more bytes than fit in the buffer, and therefore sizeof(buffer) is not the right amount

No - we should use (sizeof(buffer) - bytesRead) to ensure the correct number of bytes are written each time

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

e System calls
e open() and close()

Recap

Lecture 7 takeaway: System
calls are functions provided

* Practice: creating files by the operating system to do

* read() and write()

* Practice: copying files open, close, read and write

are 4 system calls that work
via file descriptors to work
with files.

tasks we cannot do ourselves.

Next time: introduction to

multiprocessing

cp -r /afs/ir/class/csl1lll/lecture-code/lect7 .

51

	Slide 1: CS111, Lecture 7 File Descriptors and System Calls
	Slide 2: CS198 Section Leading!
	Slide 3: CS111 Topic 1: Filesystems
	Slide 4: Learning Goals
	Slide 5: Plan For Today
	Slide 6: Plan For Today
	Slide 7: OS vs. User Mode
	Slide 8: System Calls
	Slide 9: open()
	Slide 10: open()
	Slide 11: open()
	Slide 12: File Descriptors
	Slide 13: close()
	Slide 14: Plan For Today
	Slide 15: Example: Creating a File (touch)
	Slide 16: Example: Creating a File (touch)
	Slide 17: Example: Creating a File (touch)
	Slide 18: Example: Creating a File (touch)
	Slide 19: Example: Creating a File (touch)
	Slide 20: Example: Creating a File (touch)
	Slide 21: Example: Creating a File (touch)
	Slide 22: Example: Creating a File (touch)
	Slide 23: Plan For Today
	Slide 24: read()
	Slide 25: write()
	Slide 26: Example: Copy
	Slide 27: Example: Copy
	Slide 28: Example: Copy
	Slide 29: Example: Copy
	Slide 30: Example: Copy
	Slide 31: Example: Copy
	Slide 32: Example: Copy
	Slide 33: Example: Copy
	Slide 34: Example: Copy
	Slide 35: Example: Copy
	Slide 36: Example: Copy
	Slide 37: Example: Copy
	Slide 38: Example: Copy
	Slide 39: Example: Copy
	Slide 40: Example: Copy
	Slide 41: Example: Copy
	Slide 42: Example: Copy
	Slide 43
	Slide 51: Recap

